4。8 弧长和扇形面积

文档属性

名称 4。8 弧长和扇形面积
格式 rar
文件大小 57.8KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2007-11-10 20:42:00

图片预览

文档简介

07-08学年度第一学期九年级数学教学案
4.8弧长及扇形面积
学习目标:认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
学习重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
学习难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
学习过程:
一、创设情境:
如图,某传送带的一个转动轮的半径为10cm.
1.转动轮转一周,传送带上的物品A被传送多少厘米
2.转动轮转1°,传送带上的物品A被传送多少厘米
3.转动轮转n°,传送带上的物品A被传送多少厘米
二、探究弧长和扇形的面积的公式
(一)、弧长公式的推导。
1、请同学们计算半径为,圆心角分别为、、、、所对的弧长。
这里关键是圆心角所对的弧长是多少,进而求出的圆心角所对的弧长。
因此弧长的计算公式为__________________________
练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
2、扇形的面积。
如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
问:右图中扇形有几个?
同求弧长的思维一样,要求扇形的面积,应思考圆心角为的扇形面积是圆
面积的几分之几?进而求出圆心角的扇形面积。
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么扇形的面积为
___ .
因此扇形面积的计算公式为:———————— 或 ——————————
练习:
1、如果扇形的圆心角是230°,那么这个扇形面积等于这个扇形所在圆面积的____________;
2、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是_________°.
3、扇形的面积是S,它的半径是r,这个扇形的弧长是_____________。
4、见课本P147练习:1、2、3
三、例题讲解
例1、已知如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点。设弦AB的长为d,圆环面积S与d之间有怎样的数量关系?
例2、如图,正三角形ABC的边长为a,分别以A、B、C为圆心,为半径的圆两两相切于O1、O2、O3。求围成的图形面积(图中阴影部分)
变式练习:
如图,正三角形ABC的边长为2,分别以A、B、C为圆心,1为半径画弧,与△ABC的内切圆O围成的图形为图中阴影部分。求阴影。
例3、如图,正方形的边长为a,以各边为直径在正方形内作半圆,围成的图形(阴影部分)的面积.
例4、如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D分别在OA,OB,AB上,过点A作AF⊥ED,交ED的延长线于点F,求图中阴影部分的面积.
四、小结
本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关问题,在计算时力求准确无误。
五、作业:见作业纸
07-08学年度第一学期九年级数学作业纸
内容:4.8弧长及扇形面积 班级 姓名 日期 月 日 等第
1、圆心角为60°,半径为10厘米的扇形,面积为 周长为 .
2、一段长为2的弧所在的圆半径是3,则此扇形的圆心角为_________,扇形的面积为_________。
3、如图,PA、PB切⊙O于A、B,求阴影部分周长和面积。
4、如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径是1,顺次连结四个圆心得到四边形ABCD,则图中四个扇形的面积和是多少?
5、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B点从开始
至结束所走过的路径长度是多少?
6、如图,把直角三角形ABC的斜边AB放在直线上,按顺时针方向在上转动两次,使它转到△A2B2C2的位置上,设BC=1,AC=,则顶点A运动到A2的位置时,点A经过的路线有多长?点A经过的路线与直线所围成的图形的面积有多大?
7、如图,扇形OAB的圆心角是90°,分别以OA、OB为直径在扇形内作半圆,则 两部分图形面积的大小关系是什么?