1.3勾股定理的应用
一、单选题
1.如图,将一根长的铅笔放入底面直径为,高为的圆柱形笔筒中,设铅笔露在笔筒外面的长度为,则的最小值是( )
A.5 B.7 C.12 D.13
2.如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了( )
A.2m B.2.5m C.3m D.3.5m
3.如图,小华将升旗的绳子拉紧到旗杆底端点B,绳子末端刚好接触到地面,然后拉紧绳子使其末端到点D处,点D到地面的距离CD长为2m,点D到旗杆AB的水平距离为8m,若设旗杆的高度AB长为xm,则根据题意所列的方程是( ).
A. B.
C. D.
4.如图,小蓓要赶上去实践活动基地的校车,她从点A知道校车自点B处沿x轴向原点O方向匀速驶来,她立即从A处搭一辆出租车,去截汽车.若点A的坐标为(2,3),点B的坐标为(8,0),汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为( )
A.(3,0) B.(3.5,0) C.(,0) D.(5,0)
5.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为( )
A.1.5米 B.2米 C.2.5米 D.1米
6.如图,“今有竹高两丈五尺,末折抵地,去本五尺,问折者高几何?”意思是:一根竹子,原来高两丈五尺(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部五尺远,则折断处离地面的高度为( )
A.5尺 B.12尺 C.13尺 D.15尺
7.如图,一艘海轮位干灯塔P的北偏东方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后到达位于灯塔P的南偏东方向上的B处,此时灯塔P位于海轮的什么位置?( )
A.北偏西方向,距离海轮40海里处 B.南偏东方向,距离海轮40海里处
C.北偏西方向,距离海轮海里处 D.南偏东方向,距离海轮海里处
8.如图,有一个圆柱形仓库,它的高为,地面直径为,在该仓库下地面A处有一只蚂蚁,它想吃相对一侧外面中点B处的食物,蚂蚁爬行的速度是,那么蚂蚁吃到食物至少需要爬行(取3)( )
A. B. C. D.
9.一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )
A.3尺 B.4尺 C.5尺 D.6尺
10.在高5m,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要( )
A.13m B.5m C.12m D.17m
二、填空题
11.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,中,,,,求的长,如果设,则可列方程为 .
12.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为 米.
13.如图,将一根长12cm的筷子置于底面半径为3cm,高为8cm的圆柱形杯子中,则筷子露在杯子外面的长度h至少为 cm.
14.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,那么原处还有 尺高的竹子.
15.如图所示的长方体,,,点F是DE的中点,一只蚂蚁从点A出发,沿长方体表面爬到点F,则蚂蚁爬行的最短距离为 .
三、解答题
16.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?
17.中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”.如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近,为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距40海里的船队首(点)尾(点)前去拦截,8分钟后同时到达点将可疑快艇驱离.已知甲直升机每小时飞行180海里,航向为北偏东,乙直升机的航向为北偏西,求乙直升机的飞行速度(单位:海里/小时).
18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米
(1)求墙的高度?
(2)若梯子的顶端下滑米,底端将水平动多少米?
19.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为5m/s,那么学校受影响的时间为多少秒?
20.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,现将三角板EFG绕O点顺时针旋转,旋转角满足条件四边形CHGK是旋转过程中两三角板的重叠部分(如图2).
(1)在上述旋转过程中,BH与CK有怎样的数量关系?证明你的结论;
(2)在上述旋转过程中,两个直角三角形的重叠部分面积是否会发生改变?证明你的结论.
21.一架方梯长米,如图,斜靠在一面墙上,梯子底端离墙米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了米,那么梯子的底端在水平方向滑动了几米?