中小学教育资源及组卷应用平台
北师版 七年级 数学 上册 第五章一元一次方程 单元 检测 试卷(解答卷)
选择题(本大题共有10个小题,每小题3分,共30分)
1.下列方程中,是一元一次方程的是( )
A. B. C. D.
【答案】A
2.若x=1是方程x+a=1的解,则a的值为( )
A.-1 B.0 C.1 D.2
【答案】B
3.如果与是同类项,则的值为( )
A. B. C. D.
【答案】C
4.一件标价为400元的服装以8折销售,仍可获利100元,该服装的成本价是( )
A.300元 B.320元 C.220元 D.200元
【答案】C
甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,
如果甲比乙每小时多行5千米,则乙每小时行( )
A.30千米 B.40千米 C.50千米 D.45千米
【答案】B
6.儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的2倍.
A.5年后 B.9年后 C.12年后 D.15年后
【答案】D
7.小丽同学在做作业时,不小心将方程2(x-3)-■=x+1中的一个常数污染了,
在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是( )
A.4 B.3 C.2 D.1
【答案】C
8.解方程时,去分母后,正确的是( )
A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1
C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6
【答案】D
9.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,
卖这两件衣服这个商店总的是( )
A.不亏不赚 B.赚了8元 C.亏了8元 D.无法确定
【答案】C
10.在2021年12月份的月历表中,任意框出表中竖列上三个相邻的数
(如图,如框出了10,17,24),则这三个数的和不可能是( )
A.75 B.57 C.51 D.45
【答案】A
填空题(本大题共有6个小题,每小题3分,共18分)
11.代数式2a+1与1﹣a互为相反数,则a= .
【答案】-2
12.在有理数范围定义运算:,则满足的有理数是 .
【答案】2
13.已知方程,用含的代数式表示为 .
【答案】
14.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是 千米/时.
【答案】27
15.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了 场,平了 场,负了 场.
【答案】 6, 3, 2
16.,,,为有理数,先规定一种新的运算:,那么, .
【答案】
三、解答题(本大题共有8个小题,共52分)
17.解方程:
(1)5x﹣4=2(2x﹣3)
(2)﹣=1
解:(1)去括号得:5x﹣4=4x﹣6,
移项合并得:x=﹣2;
(2)去分母得:5x﹣15﹣8x﹣2=10,
移项合并得:﹣3x=27,
解得:x=﹣9.
18.根据下图的对话解答问题.
解:设1本笔记本为x元,则1支钢笔为元.
由题意:得,
解得.
.
因此1本笔记本为2元,1支钢笔为4元
19.阅读下列解方程的过程,回答问题:
下课后,数学老师在黑板上布置了一道解一元一次方程的作业题,
不知哪一位同学将等式右边的一个符号擦掉了,变成解方程:□,
芳芳和妮妮分别补充一个符号,并做了如下解答.
芳芳:添上“”号,得.方程两边同时加,得.两边同除以,得.所以原方程无解. 妮妮:添上“”号,得.移项,得.两边同时减,得.解得.
你认为芳芳和妮妮的答案正确吗?请简要说明理由.
解:芳芳和妮妮的答案都不正确.理由如下:
因为添上“”号,得.
移项,得.
合并同类项,得.
添上“”号,得.
移项,得.
合并同类项,得.
所以,芳芳和妮妮的答案都不正确.
20.甲、乙两件服装的成本共500元,商店老板为获取利润,
决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,
两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
解:设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90% (1+50%)x+90% (1+40%)(500-x)-500=157,
解得:x=300,500-x=200.
答:甲服装的成本为300元、乙服装的成本为200元.
21.如图,用一根长为米的篱笆靠墙围成一个长方形的空地用于绿化,
且平行墙的一边为长,墙的长为米.
(1)若长方形的长比宽多米,此时长、宽各是多少?
(2)若在与墙平行的一边开设一个宽为米的门(用其他材料),
使长方形的长比宽多米,此时所围成的长方形的面积是多少?
解:(1)设长方形的宽为米,则长为米.
根据题意,得.
解得.
所以.
答:此时长方形的长为米,宽为米.
(2)设长方形的宽为米,则长为米.
根据题意,得.
解得.
所以,(平方米).
答:此时所围成的长方形的面积是平方米.
小刚和哥哥在离家2千米的同一所学校上学,小刚以4千米/时的速度步行去学校,
经过10分钟,哥哥骑自行车以12千米/时的速度去追小刚.
(1)到校前哥哥能追上小刚吗?
(2)如果哥哥能追上小刚,此时离学校还有多远?
解:(1)设哥哥走了x小时追上小刚.根据题意,得:
.
解得.
.
所以,哥哥到校前能追上小刚.
(2) (千米).
所以此时离学校还有1千米.
23.某景点的门票价格规定见下表:
购票人数/人 1~50 51~100 100以上
每人票价/元 50 45 40
甲、乙两旅游团共103人(甲团人数多于乙团)打算购买门票,如果两团分别各自购票,共需4860元.
(1)如果两团联合作为一个团体购票可节省多少元?
(2)两个旅游团各有多少人
解:(1)作为一团体购票共需(元).
所以可节省(元).
(2)设甲团有x人,则乙团有人.
如巣甲、乙两团人数都超过50人,则门票共需(元),
与已知条件不符,因而只能甲团人数超过5O人,乙团人数不足50人.
根据题意,得:
.
解得.
(人).
答:甲团有58人,乙团有45人.
24已知如图,在数轴上有A,B两点,所表示的数分别为-10,4,
点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向左运动,
如果设运动时间为t秒,解答下列问题:
(1)运动前线段AB的长为 ; 运动1秒后线段AB的长为 ;
(2)运动t秒后,点A,点B运动的距离分别为 ;用t表示A,B分别为 .
(3)求t为何值时,点A与点B恰好重合;
(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为6,
若存在,求t的值; 若不存在,请说明理由.
解:(1)运动前线段AB的长为4-(-10)=14;运动1秒后线段AB的长为14-8=6;
(2)运动t秒后,点A,点B运动的距离分别为5t,3t;用t表示A,B分别为5t-10,4-3t;
(3)根据题意得:5t-10=4-3t,
解得:t=;
(4)存在,
当A,B没有相遇时,可得14-8t=6,
解得:t=1;
当A,B错开时,可得8t-14=6,
解得:t=,
综上,当t=1秒或秒时,线段AB的长为6.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
北师版 七年级 数学 上册 第五章一元一次方程 单元 检测 试卷
选择题(本大题共有10个小题,每小题3分,共30分)
1.下列方程中,是一元一次方程的是( )
A. B. C. D.
2.若x=1是方程x+a=1的解,则a的值为( )
A.-1 B.0 C.1 D.2
3.如果与是同类项,则的值为( )
A. B. C. D.
4.一件标价为400元的服装以8折销售,仍可获利100元,该服装的成本价是( )
A.300元 B.320元 C.220元 D.200元
甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,
如果甲比乙每小时多行5千米,则乙每小时行( )
A.30千米 B.40千米 C.50千米 D.45千米
6.儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的2倍.
A.5年后 B.9年后 C.12年后 D.15年后
7.小丽同学在做作业时,不小心将方程2(x-3)-■=x+1中的一个常数污染了,
在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是( )
A.4 B.3 C.2 D.1
8.解方程时,去分母后,正确的是( )
A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1
C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6
9.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,
卖这两件衣服这个商店总的是( )
A.不亏不赚 B.赚了8元 C.亏了8元 D.无法确定
10.在2021年12月份的月历表中,任意框出表中竖列上三个相邻的数
(如图,如框出了10,17,24),则这三个数的和不可能是( )
A.75 B.57 C.51 D.45
填空题(本大题共有6个小题,每小题3分,共18分)
11.代数式2a+1与1﹣a互为相反数,则a= .
12.在有理数范围定义运算:,则满足的有理数是 .
13.已知方程,用含的代数式表示为 .
14.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,
用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是 千米/时.
15.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了 场,平了 场,负了 场.
16.,,,为有理数,先规定一种新的运算:,那么, .
三、解答题(本大题共有8个小题,共52分)
17.解方程:
(1)5x﹣4=2(2x﹣3)
(2)﹣=1
18.根据下图的对话解答问题.
19.阅读下列解方程的过程,回答问题:
下课后,数学老师在黑板上布置了一道解一元一次方程的作业题,
不知哪一位同学将等式右边的一个符号擦掉了,变成解方程:□,
芳芳和妮妮分别补充一个符号,并做了如下解答.
芳芳:添上“”号,得.方程两边同时加,得.两边同除以,得.所以原方程无解. 妮妮:添上“”号,得.移项,得.两边同时减,得.解得.
你认为芳芳和妮妮的答案正确吗?请简要说明理由.
20.甲、乙两件服装的成本共500元,商店老板为获取利润,
决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,
两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
21.如图,用一根长为米的篱笆靠墙围成一个长方形的空地用于绿化,
且平行墙的一边为长,墙的长为米.
(1)若长方形的长比宽多米,此时长、宽各是多少?
(2)若在与墙平行的一边开设一个宽为米的门(用其他材料),
使长方形的长比宽多米,此时所围成的长方形的面积是多少?
小刚和哥哥在离家2千米的同一所学校上学,小刚以4千米/时的速度步行去学校,
经过10分钟,哥哥骑自行车以12千米/时的速度去追小刚.
(1)到校前哥哥能追上小刚吗?
(2)如果哥哥能追上小刚,此时离学校还有多远?
23.某景点的门票价格规定见下表:
购票人数/人 1~50 51~100 100以上
每人票价/元 50 45 40
甲、乙两旅游团共103人(甲团人数多于乙团)打算购买门票,如果两团分别各自购票,共需4860元.
(1)如果两团联合作为一个团体购票可节省多少元?
(2)两个旅游团各有多少人
24已知如图,在数轴上有A,B两点,所表示的数分别为-10,4,
点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向左运动,
如果设运动时间为t秒,解答下列问题:
(1)运动前线段AB的长为 ; 运动1秒后线段AB的长为 ;
(2)运动t秒后,点A,点B运动的距离分别为 ;用t表示A,B分别为 .
(3)求t为何值时,点A与点B恰好重合;
(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为6,
若存在,求t的值; 若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)