中小学教育资源及组卷应用平台
一元二次方程的运用-增长率问题
知识回顾
增减率问题涉及的公式有:
(1)
(2)若设原来量是,平均增长率是,增长次数是,增长后的量是,则;若设原来量是,平均降低率是,降低次数是,降低后的量是,则.
典例精练
1.据乘用车市场信息联席会(CPCA)数据显示,我国纯电动车发展迅速,2021年8月至10月,纯电动车月批发销量由24.9万辆增加到30.3万辆.设2021年8月至10月纯电动车批发销量的月平均增长率为x,则可列方程为( )
A.24.9(1+2x)=30.3
B.24.9×2(1+x)=30.3
C.24.9【1+(1+x)+(1+x)2】=30.3
D.24.9(1+x)2=30.3
2.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末进馆288人次.若进馆人次的月平均增长率相同:
(1)求进馆人次的月平均增长率;
(2)因学校条件限制,图书馆月接纳能力不超过400人次.在进馆人次月平均增长率不变的前提下,学校图书馆能否接纳第四个月的进馆人次?请说明理由
3.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
4.(2023春·广东江门·九年级期末)汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为万元辆,销售一段时间后发现:当该型号汽车售价定为万元辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.
(1)当售价为万元辆时,求平均每周的销售利润.
(2)若该店计划下调售价,增大销量,但要确保平均每周的销售利润为万元,每辆汽车的售价定为多少合适?
5.(2023春·四川乐山·九年级统考期末)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.
(1)求四、五这两个月销售量的月平均增长百分率.
(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?
同步练习
1.某商品原价为20元,连续两次降价后售价为8元,设平均降价率为x,根据题意,可列方程为( )
A.20(1+x)2=8 B.8(1+x)2=20 C.20(1﹣x)2=8 D.8(1﹣x)2=20
2.某中学连续三年开展植树活动,已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵数的年平均增长率为x,根据题意可以列方程为( )
A.500(1+x)2=720
B.500(1+x%)2=720
C.500(1+2x)=720
D.500+500(1+x)+500(1+x)2=720
3.我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000
B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000
D.4000+4000(1+x)2=15000
4.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A. B.
C. D.
5.某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
6.某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
7.随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
针对练习
电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为,下面所列方程正确的是
A. B.
C. D.
某市客流量已连续两周下降,由每周50万次下降至每周32万次,设平均下降率为,则根据题意列方程是 .
3.某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为 .根据题意列方程正确的是( )
A. B.
C. D.
4.(2023春·重庆九龙坡·九年级统考期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.
(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;
(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了,进货量比九月底增加,以标价的八折全部售出后,比国庆节的总利润多1200元,求的值.
5.(2023春·黑龙江大庆·九年级校考期末)随着我国数字化阅读方式的接触率和人群持续增多,数字阅读凭借独有的便利性成为了更快获得优质内容的重要途径.某市2020年数字阅读市场规模为万元,2022年数字阅读市场规模为万元.
(1)求2020年到2022年该市数字阅读市场规模的年平均增长率;
(2)若年平均增长率不变,求2023年该市数字阅读市场规模是多少万元
6.(2023春·河北承德·九年级承德市第四中学校考期中)在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元下降到5月份的4050元
(1)问4、5两月平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破3000元?请说明理由.
7.(2023春·湖南长沙·九年级校联考期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润销售价进货价)
(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;
(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一元二次方程的运用-增长率问题
知识回顾
增减率问题涉及的公式有:
(1)
(2)若设原来量是,平均增长率是,增长次数是,增长后的量是,则;若设原来量是,平均降低率是,降低次数是,降低后的量是,则.
典例精练
1.据乘用车市场信息联席会(CPCA)数据显示,我国纯电动车发展迅速,2021年8月至10月,纯电动车月批发销量由24.9万辆增加到30.3万辆.设2021年8月至10月纯电动车批发销量的月平均增长率为x,则可列方程为( )
A.24.9(1+2x)=30.3
B.24.9×2(1+x)=30.3
C.24.9【1+(1+x)+(1+x)2】=30.3
D.24.9(1+x)2=30.3
【答案】D
【解答】解:依题意得:24.9(1+x)2=30.3.
故选:D.
2.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末进馆288人次.若进馆人次的月平均增长率相同:
(1)求进馆人次的月平均增长率;
(2)因学校条件限制,图书馆月接纳能力不超过400人次.在进馆人次月平均增长率不变的前提下,学校图书馆能否接纳第四个月的进馆人次?请说明理由
【解答】解:(1)设进馆人次的月增长率为x,
依题意得:128(1+x)2=288,
解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).
答:进馆人次的月平均增长率50%.
(2)学校图书馆不能接纳第四个月的进馆人次,理由如下:
∵进馆人次的月平均增长率50%,
∴第四个月的进馆人次为288×(1+50%)=432(人次).
∵432>400,
∴学校图书馆不能接纳第四个月的进馆人次.
3.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
【答案】
【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.
【详解】解:设年买书资金的平均增长率为,
由题意得:,
解得或(不符合题意,舍去),
答:年买书资金的平均增长率为.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.
4.(2023春·广东江门·九年级期末)汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为万元辆,销售一段时间后发现:当该型号汽车售价定为万元辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.
(1)当售价为万元辆时,求平均每周的销售利润.
(2)若该店计划下调售价,增大销量,但要确保平均每周的销售利润为万元,每辆汽车的售价定为多少合适?
【答案】(1)平均每周的销售利润是万元
(2)每辆汽车的售价定为万元更合适
【分析】(1)根据当该型号汽车售价定为万元辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆,即可求出当售价为万元辆时,平均每周的销售量,再根据销售利润一辆汽车的利润销售数量列式计算;
(2)设每辆汽车降价万元,根据每辆的盈利销售的辆数万元,列方程求出的值,进而得到每辆汽车的售价.
【详解】(1)解:∵当售价为万元辆时,平均每周销量为:(辆,
∴平均每周利润为:(万元),
答:平均每周的销售利润是万元;
(2)解:设每辆汽车的售价是万元,
.
化简,得,
,
解得:,,
由于希望增大销量,定价万元售价更合适,
答:每辆汽车的售价定为万元更合适.
【点睛】本题主要考查了一元二次方程的应用,读懂题意找准数量关系与等量关系是解题的关键.
5.(2023春·四川乐山·九年级统考期末)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.
(1)求四、五这两个月销售量的月平均增长百分率.
(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?
【答案】(1)
(2)5元
【分析】(1)利用平均增长率的等量关系:,列式计算即可;
(2)利用总利润单件利润销售数量,列方程求解即可.
【详解】(1)解:设平均增长率为,由题意得:
,
解得:或(舍);
∴四、五这两个月的月平均增长百分率为;
(2)解:设降价元,由题意得:
,
整理得:,
解得:或(舍);
∴当商品降价5元时,商场六月份可获利4250元.
【点睛】本题考查一元二次方程的实际应用.根据题意正确的列出一元二次方程是解题的关键.
同步练习
1.某商品原价为20元,连续两次降价后售价为8元,设平均降价率为x,根据题意,可列方程为( )
A.20(1+x)2=8 B.8(1+x)2=20 C.20(1﹣x)2=8 D.8(1﹣x)2=20
【答案】C
【解答】解:由题意可得,
20(1﹣x)2=8,
故选:C.
2.某中学连续三年开展植树活动,已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵数的年平均增长率为x,根据题意可以列方程为( )
A.500(1+x)2=720
B.500(1+x%)2=720
C.500(1+2x)=720
D.500+500(1+x)+500(1+x)2=720
【答案】A
【解答】解:根据题意得:500(1+x)2=720,
故答案为:500(1+x)2=720.
故选:A.
3.我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000
B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000
D.4000+4000(1+x)2=15000
【答案】C
【解答】解:设平均每年的增长率是x,根据题意可得:
4000(1+x)+4000(1+x)2=15000.
故答案为:C
4.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A. B.
C. D.
【答案】B
【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意列出一元二次方程即可.
【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,
根据题意得,.
故选:B.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
5.某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
【答案】
【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.
【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,
,
故答案为:.
【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.
6.某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
【答案】
【分析】设这两年绿化面积的年平均增长率为,依题意列出一元二次方程即可求解.
【详解】解:设这两年绿化面积的年平均增长率为,则依题意列方程为,
故答案为:.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
7.随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
【答案】(1)这两个月中该景区游客人数的月平均增长率为;(2)5月份后10天日均接待游客人数最多是1万人
【分析】(1)设这两个月中该景区游客人数的月平均增长率为,根据题意,列出一元二次方程,进行求解即可;
(2)设5月份后10天日均接待游客人数是y万人,根据题意,列出不等式进行计算即可.
【详解】(1)解:设这两个月中该景区游客人数的月平均增长率为,由题意,得:
,
解得:(负值已舍掉);
答:这两个月中该景区游客人数的月平均增长率为;
(2)设5月份后10天日均接待游客人数是y万人,由题意,得:
,
解得:;
∴5月份后10天日均接待游客人数最多是1万人.
【点睛】本题考查一元二次方程和一元一次不等式的实际应用,找准等量关系,正确的列出方程和不等式,是解题的关键.
针对练习
电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为,下面所列方程正确的是
A. B.
C. D.
【分析】第一天为2亿元,根据增长率为得出第二天为亿元,第三天为亿元,根据“第三天票房收入约达到4亿元”,即可得出关于的一元二次方程.
【解析】解:设平均每天票房的增长率为,
根据题意得:.
故选:.
某市客流量已连续两周下降,由每周50万次下降至每周32万次,设平均下降率为,则根据题意列方程是 .
【分析】先表示出第二周客流量下降后的人数,根据两周下降后下降至每周32万次列出方程即可.
【解析】解:第一周客流量下降后为:,
第二周客流量下降后为:,
.
故答案为:.
3.某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为 .根据题意列方程正确的是( )
A. B.
C. D.
【答案】D
【解答】解:根据题意列方程得:
.
故答案为:D.
4.(2023春·重庆九龙坡·九年级统考期末)某图书店在2022年国庆节期间举行促销活动,某课外阅读书进货价为每本8元,标价为每本15元.
(1)该图书店举行了国庆大回馈活动,连续两次降价,每次降价的百分率相同,最后以每本9.6元的价格售出,求图书店每次降价的百分率;
(2)在九月底该书店老板去进货该书500本,按照(1)两次降价后的价格在国庆节全部售出;国庆节后老板去进货发现进货价上涨了,进货量比九月底增加,以标价的八折全部售出后,比国庆节的总利润多1200元,求的值.
【答案】(1)
(2)
【分析】(1)设商城每次降价的百分率为x,利用经过两次降价后的价格=原价每次降价的百分率,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;
(2)分别求出国庆节的总利润和国庆节后的总利润,根据国庆节后的总利润比国庆节的总利润多1200元列出方程,求出的值即可
【详解】(1)设图书店每次降价的百分率为x,
依题意得:,
解得:,(不合题意,舍去).
答:商城每次降价的百分率为.
(2)根据题意得,
整理得,
解得,,或(舍去)
故的值为
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
5.(2023春·黑龙江大庆·九年级校考期末)随着我国数字化阅读方式的接触率和人群持续增多,数字阅读凭借独有的便利性成为了更快获得优质内容的重要途径.某市2020年数字阅读市场规模为万元,2022年数字阅读市场规模为万元.
(1)求2020年到2022年该市数字阅读市场规模的年平均增长率;
(2)若年平均增长率不变,求2023年该市数字阅读市场规模是多少万元
【答案】(1)
(2)预计2023年该市数字阅读市场规模是万元
【分析】(1)设2020年到2022年该市数字阅读市场规模的年平均增长率为,利用2022年该市数字阅读市场规模年该市数字阅读市场规模,即可得出关于的一元二次方程,解之取其符合题意的值即可得出结论;
(2)利用2023年该市数字阅读市场规模年该市数字阅读市场规模,可预计出2023年该市数字阅读市场规模.
【详解】(1)解:设2020年到2022年该市数字阅读市场规模的年平均增长率为
根据题意得:
解得:,(不符合题意,舍去)
答:2020年到2022年该市数字阅读市场规模的年平均增长率为
(2)(万元)
∴预计2023年该市数字阅读市场规模是万元.
【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列式计算.
6.(2023春·河北承德·九年级承德市第四中学校考期中)在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元下降到5月份的4050元
(1)问4、5两月平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破3000元?请说明理由.
【答案】(1)
(2)不会,理由见解析
【分析】(1)设4、5两月平均每月降价的百分率是x,那么4月份的房价为,5月份的房价为,然后根据5月份的4050元即可列出方程解决问题;
(2)根据(1)的结果可以计算出今年7月份商品房成交均价,然后和3000元进行比较即可作出判断.
【详解】(1)解:设4、5两月平均每月降价的百分率是x,
,(舍)
答:4、5两月平均每月降价的百分率是.
(2)否,理由如下:
∵(元)
,
∴预测到7月份该市的商品房成交均价不会跌破3000元.
【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
7.(2023春·湖南长沙·九年级校联考期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润销售价进货价)
(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;
(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?
【答案】(1)A中苹果购进10件,B中苹果购进20件
(2)购进A种苹果40件,B中苹果40件时,获得最大销售利润为1040元
(3)将销售价定为每件27元时,才能使B种红富士苹果平均每天销售利润为90元
【分析】(1)设A,B两种苹果分别购进件和件,列方程组求解即可.
(2)设购进A种苹果件,利润为元,列出关于的函数关系式讨论最值即可.
(3)设B种苹果降价元销售,根据利润元,列出一元二次方程求出,得到结果.
【详解】(1)解:设A,B两种苹果分别购进件和件,
由题意得:,
解得,
答:A中苹果购进10件,B中苹果购进20件.
(2)解:设购进A种苹果件,则购进B种苹果件,
由题意得:,
,
设利润为元,
则,
,
随的增大额增大,
当时,.
故购进A种苹果40件,B中苹果40件时,获得最大销售利润为1040元.
(3)解:设B种苹果降价元销售,则每天多销售件,每天每件利润为元,
由题意得:,
解得,或,
为了尽快减少库存,
,
,
答:将销售价定为每件27元时,才能使B种红富士苹果平均每天销售利润为90元.
【点睛】本题考查了二元一次方程组,一次函数,一元一次不等式以及一元二次方程的应用,读懂题意找出等量或不等关系是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)