【核心素养目标】人教版数学七年级上册3.2 第2课时 用移项的方法解一元一次方程 教案 (表格式)

文档属性

名称 【核心素养目标】人教版数学七年级上册3.2 第2课时 用移项的方法解一元一次方程 教案 (表格式)
格式 docx
文件大小 412.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-09-10 22:53:13

图片预览

文档简介

3.2 解一元一次方程(一)
——合并同类项与移项
3.2 第2课时 用移项的方法解一元一次方程
教学内容 3.2 第2课时 用移项的方法解一元一次方程 课时 1
核心素养目标 1.会用数学的眼光观察现实世界:经历根据具体实际回题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力. 2.会用数学的思维思考现实世界:通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想;通过具体情境的探索、交流等数学活动, 培养学生的团队合作意识和积极参与、勤于思考的习惯. 3.会用数学的语言表示现实世界:学会运用合并同类项解形如ax+b=cx+d类型的一元一次方程,进一步体会方程中的“化归”思想.
知识目标 1.理解移项的意义,掌握移项的方法. 2.学会运用移项解形如“ax+b=cx+d”的一元一次方程. 3.能够抓住实际问题中的数量关系列一元一次方程解决实际问题.
教学重点 运用移项解形如“ax+b=cx+d”的一元一次方程.
教学难点 分析实际问题中的已知量和未知量,找出相等关系,列方程解决问题.
教学准备 课件
教学过程 主要师生活动 设计意图
一、情境导入 一、创设情境,导入新知 师生活动:教师借助多媒体展示实际情境,学生分组讨论并回答:“如何找出相等的关系和列出合适方程呢 ”
现创意书架上已经有一些同学们捐赠的图书,需要分给七(2)班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有学生多少人? 预设1:等量关系:书籍总数一定.
预设2:设学生人数为x人,根据每人分3本,则剩余20本,得书籍总数为(3x+20)本. 预设3:设学生人数为x人,根据每人分4本,则还缺25本,得书籍总数为(4x-25)本. 师生活动:教师根据学生的回答将所得的方程:3x+20=4x-25板书在黑板上,并提问:“如何解此方程呢?” 设计意图:始终以设计创意书架作为主线,从生活实际问题出发,用数学的眼光看待现实生活所遇到的问题,激发学生兴趣的同时培养学生发现问题的能力.
二、探究新知 三、当堂练习,巩固所学 小组合作,探究性质 师生活动:根据导入提出的问题,学生分组探究解方程:3x+20=4x-25. 预设1:
解:两边减 20,得 3x+20-20=4x-25-20. 合并同类项,得 3x=4x-45. 两边减4x,得 3x-4x=4x-4x-45. 合并同类项,得 -x=-45. 系数化为1,得 x=45. 师生活动:学生在解方程的过程中发现像上述这样解题步骤较为繁琐,发现可以把重复的步骤简化为一步:两边同减20,同减4x.教师规范解这个方程的具体过程,并讲述把等式的一边的某项变号后移到另一边叫做移项.
师:某项移项后,有什么变化吗? 预设1:只知道运用等式的性质解方程,无法准确描述出移项后可以看作是原来的某一项只是符号发生改变. 例1 解下列方程: (1)3x+7=32-2x;
(2) x-3= x+1. 教师活动:请两个学生上台扮演,其他有同学独立完成解方程。教师示范正确的解题步骤。
例2某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排水量比环保限制的最大量少100 t,新、旧工艺的废水排水量之比是2:5,两种工艺的废水排水量是多少? 师生活动:教师展示问题,学生独立思考,小组讨论,代表回答:等量关系是环保限制的最大排水量一定。设新、旧工艺的废水排水量分别为 2x t 和 5x t。可列得方程5x-200=2x+100。教师引导学生完善答题步骤。
三、当堂练习,巩固所学 1.判断下列方程的变形是否正确.正确的在括号里打“√”;错误的在括号里打“×”,并改正. (1) 由 3+x=8 得 x=8+3; ( ) (2) 由 6x=8+x 得 6x-x=-8; ( ) (3) 由 4x=3x+1 得 4x-3x=1; ( ) (4) 由 3x+2=0 得 3x=2. ( ) 2.解方程: (1) 4x + 3 = 2-x; (2) x+1=x-1;
(3) 3x-7+4x=6x-2;
(4) 6-8x=3x+3-5x. 在植树节活动中,七(1)班某小组的学生积极参加植树活动,老师为大家提前准备了一定数量的树苗.如果每人种2棵,那么还余3棵树苗;如果每人种3棵,那么还少12棵树苗.该小组有学生多少人 共有多少棵树苗 设计意图:解决导入提出问题,激发学生学习兴趣。通过学生的思考、观察和教师的讲解,认识“移项”变形,得出移项的方法,便于学生理解移项的原理。教师应强调移哪些项是根据解方程需要确定的,移项时注意方程中的某项包括它前面的性质符号,“符号”加“绝对值”是一个整体. 设计意图:进一步巩固移项、合并同类项解方程的方法.
设计意图:进一步分析实际问题中的已知量和未知量,找出相等关系,列方程解决问题,渗透数学思想. 设计意图:题1和题2考查移项时需要注意换号以及用移项法解方程. 设计意图:回归到学生熟悉的问题中,使学生感受到数学与实际生活密不可分的同时巩固本节课所学.
板书设计 3.2 第2课时 用移项的方法解一元一次方程 1.移项:把等式一边的某项变号后移到另一边,叫做移项. 2.解方程:3x+20=4x-25. 解:移项,得 3x-4x=-25-20. 合并同类项, 得 -x=-45. 系数化为1,得 x=45.
课后小结 教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题: 1.本节课的主要内容是什么?
2.移项的依据是什么?移项起到什么样的作用?移项时应该注意什么问题? 3.解 ax+b=cx+d 型方程的步骤是什么?
教学反思 1.移项时注意变号: 在利用移项的方法解一元一次方程的时候,特别容易出错的地方是移项需要改变符号。如果明白改变符号的依据(等式的性质1),就可以减少这个错误的发生。 2.等量关系的引导 列方程是本章的重点,也是本章的难点。在每一节课成内容的编排上都会基于实际问题为出发点,找寻不同情境中的等量关系也尤为重要。在后面的学习更会学习工程、配套、方案选择、球赛积分等问题,紧抓已知条件,找寻等量关系。