中小学教育资源及组卷应用平台
一元二次方程的运用-动点问题
知识回顾
动点问题经常会与三角形及四边形的面积关系有关,主要要熟悉动点与各边的关系与面积公式。
典例精练
1.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )
A.2s B.3s C.4s D.5s
【答案】B
【解答】解:设当运动时间为t秒时,△PBQ的面积为15cm2,
依题意得:×(8﹣t)×2t=15,
整理得:t2﹣8t+15=0,
解得:t1=3,t2=5.
又∵2t≤6,
∴t≤3,
∴t=3.
故选:B.
2.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P以1cm/s的速度从点A开始沿边AB向点B移动,点Q以2cm/s的速度从点B开始沿边BC向点C移动,如果点P、Q分别从点A、B同时出发,( )s后P、Q之间的距离等于cm.
A. B.2 C. D.或2
【分析】设经过x秒,P、Q之间的距离等于cm.先用含x的代数式分别表示BP和BQ的长度,进一步利用勾股定理建立方程求得答案即可.
【解析】设点P、Q分别从点A、B同时出发,xs后P、Q之间的距离等于cm,
∵AP=1 x=x,BQ=2x,
∴BP=AB﹣AP=6﹣x,
∴BP2+BQ2=PQ2,
即(6﹣x)2+(2x)2=()2,
解得:x1=,x2=2(不合题意,舍去).
答:点P、Q分别从点A、B同时出发,s后P、Q之间的距离等于cm.
故选:A.
3.(2023春·广东江门·九年级校考期中)如图,在等腰中,,,动点P从点A出发沿向点B移动,作,,当的面积为面积的一半时,点P移动的路程为( )
A. B. C. D.
【答案】B
【分析】设AP=xcm,则PB=(8 x)cm,求出∠A=45°,∠APR=90°,得到PR=PA=xcm,然后根据 PQCR的面积为△ABC面积的一半列方程求解即可.
【详解】解:设AP=xcm,则PB=(8 x)cm,
∵∠B=90°,AB=BC=8cm,
∴∠A=45°,
∵PRBC,
∴∠APR=90°,
∴PR=PA=xcm,
∵ PQCR的面积为△ABC面积的一半,
∴,
解得:,
∴点P移动的路程为4cm.
故选:B.
【点睛】本题主要考查了平行四边形的性质,一元二次方程的应用,根据几何图形的性质得出方程是解题的关键.
4.如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过 s后,P,Q两点之间相距25cm.
【答案】10
【解答】解:设x秒后P、Q两点相距25cm,
则CP=2xcm,CQ=(25﹣x)cm,
由题意得,(2x)2+(25﹣x)2=252,
解得,x1=10,x2=0(舍去),
则10秒后P、Q两点相距25cm.
故答案是:10.
5.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?
(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.
【分析】(1)根据PQ=2利用勾股定理BP2+BQ2=PQ2,求出即可;
(2)由(1)得,当△PQB的面积等于7cm2,然后利用根的判别式判断方程根的情况即可;
【解答】(1)设x秒后,PQ=2
BP=5﹣x BQ=2x
∵BP2+BQ2=PQ2
∴(5﹣x)2+(2x)2=(2)2
解得:x1=3,x2=﹣1(舍去)
∴3秒后,PQ的长度等于2;
(2)△PQB的面积不能等于7cm2,原因如下:
设t秒后,PB=5﹣t QB=2t
又∵S△PQBBP×QB=7
(5﹣t)×2t=7
∴t2﹣5t+7=0
△=52﹣4×1×7=25﹣28=﹣3<0
∴方程没有实数根
∴△PQB的面积不能等于7cm2.
6.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点B出发沿线段BC、CD以2cm/s的速度向终点D运动;同时,点Q从点C出发沿线段CD、DA以1cm/s的速度向终点A运动(P、Q两点中,只要有一点到达终点,则另一点运动立即停止).
(1)运动停止后,哪一点先到终点?另一点离终点还有多远?
(2)在运动过程中,△APQ的面积能否等于22cm2?若能,需运动多长时间?若不能,请说明理由.
【分析】(1)根据题意可以分别计算出两个点运动到终点的时间,从而可以解答本题;
(2)先判断,然后计算出相应的时间即可解答本题.
【解析】(1)点P从开始到运动停止用的时间为:(12+6)÷2=9s,
点Q从开始到运动停止用的时间为:(6+12)÷1=18s,
∵9<18,只要有一点到达终点,则另一点运动立即停止,
∴点P先到终点,此时点Q离终点的距离是:(6+12)﹣1×9=9cm,
答:点P先到终点,此时点Q离终点的距离是9cm;
(2)在运动过程中,△APQ的面积能等于22cm2,
当P从点B运动到点C的过程中,设点P运动时间为as,
∵△APQ的面积能否等于22cm2,
∴12×622,
解得,此方程无解;
当点P从C到D的过程中,设点P运动的时间为(b+6)s,
∵△APQ的面积能否等于22cm2,
∴12×622,
解得,b1=1,b2=14(舍去),
即需运动6+1=7s,△APQ的面积能等于22cm2
同步练习
1.如图,△ABC中,∠C=90,AB=10cm,AC=8cm,点P从点A开始出发向点C以2cm/s的速度移动,点Q从B点出发向点C以1cm/s的速度移动,若P、Q分别同时从A,B出发,( )秒后四边形APQB是△ABC面积的.
A.2 B.4.5 C.8 D.7
【分析】由于四边形APQB是一个不规则的图形,不容易表示它的面积,观察图形,可知S四边形APQB=S△ABC﹣S△PCQ,因此当四边形APQB是△ABC面积的时,△PCQ是△ABC面积的,即有S△PCQS△ABC.
【解析】∵△ABC中,∠C=90°,
∴△ABC是直角三角形,
由勾股定理,得BC6.
设t秒后四边形APQB是△ABC面积的,
则t秒后,CQ=BC﹣BQ=6﹣t,PC=AC﹣AP=8﹣2t.
根据题意,知S△PCQS△ABC,
∴CQ×PCAC×BC,
即(6﹣t)(8﹣2t)8×6,
解得t=2或t=8(舍去).
故选:A.
在△ABC中, AC=50cm, CB=40cm, ∠C=90°,点P从点A开始沿AC边向点C以2cm/s的速度移动, 同时另一点Q由C点以3cm/s的速度沿着CB边移动,几秒钟后,△PCQ的面积等于450cm 若设t秒后,△PCQ的面积等于450cm ,则t的值为
【解答】解:由题意得:AP=2t PC=50-2t CQ=3t
解得:t1=10 t2=15
因为当t=15时,3t=45>BC,所以不合题意,舍去
所以:t=10
3.(2023春·浙江·九年级期末)如图,在等腰中,,动点P从点A出发沿折线向点终B以的速度运动,于点Q.设运动时间为,
当t= s时,的面积为.
【答案】或
【分析】利用等腰直角三角形的性质求出AB,设时间为秒,分和两种情况结合三角形面积分别计算.
【详解】解:∵在等腰中,,,
∴,,.
∵于点.
∴设当时间为秒时,的面积为.
当时,,,
,即,
解得:或(舍去).
当时,,,
,即,
解得:或(舍去).
综上所述:当或秒时,的面积为.
故答案为:或.
【点睛】本题考查了等腰直角三角形的性质,勾股定理,三角形面积公式,解一元二次方程,解题的关键是理解点的运动情况,注意分类讨论.
4.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.
(1)BP= cm;BQ= cm;(用t的代数式表示)
(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?
【解答】解:(1)根据题意得:AP=2tcm,BQ=4tcm,
所以BP=(12﹣2t)cm,
故答案是:(12﹣2t);4t;
(2)如图,过点D作DH⊥BC于H,
∵∠B=90°,即AB⊥BC.
∴AB∥DH.
又∵D是AC的中点,
∴BH=BC=12cm,DH是△ABC的中位线.
∴DH=AB=6cm.
根据题意,得﹣×(12﹣2t)﹣×(24﹣4t)×6﹣×2t×12=40,
整理,得t2﹣6t+8=0.
解得:t1=2,t2=4,
即当t=2或4时,△PBQ的面积是40cm2.
针对练习
1.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )
A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟
【分析】设出动点P,Q运动t秒,能使△PBQ的面积为15cm2,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答.
【解析】设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,
则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,
(8﹣t)×2t=15,
解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).
∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.
故选:B.
2.如图,在Rt△ABC中,AB=6cm,BC=8cm.点P从点A出发,沿AB边以1cm/s的速度向点B移动;点Q从点B同时出发,沿BC边以2cm/s的速度向点C移动.规定其中一个动点到达终点时,另一个动点也随之停止运动.问经过几秒后,P,Q两点的距离是4cm?
【解答】解:设经过t秒后,P,Q两点的距离是4cm,
根据题意,得(2t)2+(6﹣t)2=(4)2,
整理,得(5t﹣2)(t﹣2)=0,
解得t1=,t2=2.
当t=2时,2t=4<8,符合题意,
答:秒或2秒后,P,Q两点间的距离等于4cm
3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
【解答】解:如图,
过点Q作QE⊥PB于E,则∠QEB=90°.
∵∠ABC=30°,
∴2QE=QB.
∴S△PQB= PB QE.
设经过t秒后△PBQ的面积等于4cm2,
则PB=(6﹣t)cm,QB=2t(cm),QE=t(cm).
根据题意, (6﹣t) t=4.
t2﹣6t+8=0.
t1=2,t2=4.
当t=4时,2t=8,8>7,不合题意舍去,取t=2.
当点Q到达C点时,此时t=,
S△PQB=××(6﹣t)=4
∴t=>,
答:经过2秒后△PBQ的面积等于4cm2.
4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.问:
(1)几秒时△PBQ的面积等于8cm2;
(2)几秒时△PDQ的面积等于28cm2;
(3)几秒时PQ⊥DQ.
【分析】(1)表示出PB,QB的长,利用△PBQ的面积等于8cm2列式求值即可;
(2)设出发秒x时△DPQ的面积等于28平方厘米,根据三角形的面积公式列出方程,再解方程即可;
(3)如果PQ⊥DQ,则∠DQP为直角,得出△BPQ∽△CQD,即可得出,再设AP=x,QB=2x,得出,求出x即可.
【解析】
(1)设x秒后△PBQ的面积等于8cm2.
则AP=x,QB=2x.
∴PB=6﹣x.
∴(6﹣x)2x=8,
解得x1=2,x2=4,
答:2秒或4秒后△PBQ的面积等于8cm2;
(2)设出发秒x时△DPQ的面积等于28cm2.
∵S矩形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ
∴12×612x2x(6﹣x)6×(12﹣2x)=28,
化简整理得 x2﹣6x+8=0,
解得x1=2,x2=4,
答:2秒或4秒后△PDQ的面积等于28cm2;
(3)设x秒后PQ⊥DQ时,则∠DQP为直角,
∴△BPQ∽△CQD,
∴,
设AP=x,QB=2x.
∴,
∴2x2﹣15x+18=0,
解得:x或6,
经检验x是原分式方程的根,x=6不是原分式方程的根,
当x=6时,P点到达B点、Q点到达C点,此时PQ⊥DQ.
答:秒或6秒后PQ⊥DQ.
5.(2023春·广东江门·九年级校考期中)如图,是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC匀速移动,它们的速度都是2cm/s,当点P到达点B时,P,Q两点都停止运动,设点P的运动时间为ts,解答下列问题:
(1)当t为何值时,是以为直角的直角三角形?
(2)是否存在t,使四边形的面积是面积的?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)1
(2)不存在,理由见解析
【分析】(1)当时,利用直角三角形的性质建立方程,解方程即可得;
(2)假设存在某一时刻,使四边形的面积是面积的,从而可得,过点作于点,利用直角三角形的性质和勾股定理可得,再利用三角形的面积公式建立方程,然后利用一元二次方程根的判别式进行分析即可得出答案.
【详解】(1)由题意得:,
,
为等边三角形,
,
当点到达点时,,
则,
∵,
,
,即,
解得,符合题意;
(2)不存在,使四边形的面积是面积的,理由如下:
假设存在某一时刻,使四边形的面积是面积的,
由(1)得:,
,
如图,过点作于点,
,
,
,
整理得:,
此方程根的判别式为,方程无解,
所以假设不成立,
即不存在,使四边形的面积是面积的.
【点睛】本题考查了等边三角形的性质、含角的直角三角形的性质、勾股定理、一元二次方程的应用等知识点,正确建立关于时间的方程是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一元二次方程的运用-动点问题
知识回顾
动点问题经常会与三角形及四边形的面积关系有关,主要要熟悉动点与各边的关系与面积公式。
典例精练
1.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )
A.2s B.3s C.4s D.5s
2.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P以1cm/s的速度从点A开始沿边AB向点B移动,点Q以2cm/s的速度从点B开始沿边BC向点C移动,如果点P、Q分别从点A、B同时出发,( )s后P、Q之间的距离等于cm.
A. B.2 C. D.或2
3.(2023春·广东江门·九年级校考期中)如图,在等腰中,,,动点P从点A出发沿向点B移动,作,,当的面积为面积的一半时,点P移动的路程为( )
A. B. C. D.
4.如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过 s后,P,Q两点之间相距25cm.
5.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?
(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.
6.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点B出发沿线段BC、CD以2cm/s的速度向终点D运动;同时,点Q从点C出发沿线段CD、DA以1cm/s的速度向终点A运动(P、Q两点中,只要有一点到达终点,则另一点运动立即停止).
(1)运动停止后,哪一点先到终点?另一点离终点还有多远?
(2)在运动过程中,△APQ的面积能否等于22cm2?若能,需运动多长时间?若不能,请说明理由.
同步练习
1.如图,△ABC中,∠C=90,AB=10cm,AC=8cm,点P从点A开始出发向点C以2cm/s的速度移动,点Q从B点出发向点C以1cm/s的速度移动,若P、Q分别同时从A,B出发,( )秒后四边形APQB是△ABC面积的.
A.2 B.4.5 C.8 D.7
在△ABC中, AC=50cm, CB=40cm, ∠C=90°,点P从点A开始沿AC边向点C以2cm/s的速度移动, 同时另一点Q由C点以3cm/s的速度沿着CB边移动,几秒钟后,△PCQ的面积等于450cm 若设t秒后,△PCQ的面积等于450cm ,则t的值为
3.(2023春·浙江·九年级期末)如图,在等腰中,,动点P从点A出发沿折线向点终B以的速度运动,于点Q.设运动时间为,
当t= s时,的面积为.
4.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.
(1)BP= cm;BQ= cm;(用t的代数式表示)
(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?
针对练习
1.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )
A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟
2.如图,在Rt△ABC中,AB=6cm,BC=8cm.点P从点A出发,沿AB边以1cm/s的速度向点B移动;点Q从点B同时出发,沿BC边以2cm/s的速度向点C移动.规定其中一个动点到达终点时,另一个动点也随之停止运动.问经过几秒后,P,Q两点的距离是4cm?
3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.问:
(1)几秒时△PBQ的面积等于8cm2;
(2)几秒时△PDQ的面积等于28cm2;
(3)几秒时PQ⊥DQ.
5.(2023春·广东江门·九年级校考期中)如图,是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC匀速移动,它们的速度都是2cm/s,当点P到达点B时,P,Q两点都停止运动,设点P的运动时间为ts,解答下列问题:
(1)当t为何值时,是以为直角的直角三角形?
(2)是否存在t,使四边形的面积是面积的?若存在,求出t的值;若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)