中小学教育资源及组卷应用平台
一元二次方程的运用-销售问题
知识回顾
常用公式:
(1)利润=售价-成本;
(2)利润=售价–成本价=标价×折扣–成本价.
(3)利润率=
(3)销售额=销售价×销售量.
(4)销售利润=(销售价–成本价)×销售量
(5)总利润=每件利润×销售量;
(6)每每问题中,单价每涨a元,少买y件。若涨价y元,则少买的数量为
典例精练
1.尊老爱幼是中华民族的传统美德,菜商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.不考虑其他因素的影响,若商店销售这款商品的利润要达到平均每天1280元,销售单价应降低多少元?
2.今年大德福超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.
(1)求四、五这两个月的月平均增长率.
(2)从六月份起,商场为了减少库存,从而采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场月获利4250元?
3.2022年4月8日,CCTV﹣13新闻频道《朝闻天下》,报道了山东新泰《香椿进入收获期,“椿”意盎然助增收》,我市香椿畅销全国各地.当地某电商对一款成本价为30元的香椿商品进行直播销售,如果按每件40元销售,平均每月可卖出600件.通过市场调查发现,每件香椿商品售价每上涨1元,其月销售量就将减少10件.为了实现平均每月12000元的销售利润,
(1)这种商品的售价应定为多少?
(2)这时商家每月能售出该香椿商品多少件?
4.某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数关系式;
(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?
5.(2023春·重庆云阳·九年级校联考期中)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国传染开来,与此同时医护人员一直坚守在抗击肺炎的前线,为我们保驾护航!罗曼·罗兰说:“凡是行为善良与高尚的人,定能因之而担当患难.”他们是最可亲可敬的人!由此,医疗物资护目镜的需求量大大增加,两江新区某护目镜生 产厂家自正月初三起便要求全体员工提前返岗,在接到单位的返岗通知后,员工们都毫无怨言,快速回到了自己的工作岗位,用自己的实际行动践行着一份责任和担当.已知该厂拥有两条不同的护目镜加工生产线A,B.原计划A生产线每小时生产护目镜400个,B生产线每小时生产护目镜500个.
(1)若生产线A,B一共工作12小时,且生产护目镜的总数量不少于5500个,则B生产线至少生产护目镜多少小时?
(2)原计划A,B生产线每天均工作8小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,A生产线每增加1小时,该生产线每小时的产量将减少10个,B生产线每增加1小时,该生产线每小时的产量将减少15个.这样一天生产的护目镜将比原计划多3300个,求该厂实际每天生产护目镜的时间.
同步练习
1.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为( )
A.56元 B.57元 C.59元 D.57元或59元
2.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?
3.某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?
4.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.
(1)求平均每次降价盈利的百分率;
(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?
5.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量(桶)与每桶降价(元)()之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?
6.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:
小王:该水果的进价是每千克22元;
小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.
根据他们的对话,解决下面所给问题:
(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?
(2)设该水果超市一天可获利润 元.求当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.
.
针对练习
某超市将进价为40元件的商品按50元件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价元,则依据题意可列方程为
A. B.
C. D.
2.(2022·河北保定·一模)某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶,经市场调查表明,每瓶售价每增加1元,日均销售量减少20瓶.若超市计划该饮料日均总利润为700元,且尽快减少库存,则每瓶该饮料售价为( )
A.11 B.12 C.13 D.14
3.某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.
(1)当每箱水果降价10元,则每箱利润 元,平均每天可售出 箱.
(2)若销售该种水果平均每天盈利8100元,则每箱应降价多少元?
4.(2023春·重庆沙坪坝·九年级重庆南开中学校考开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).
(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?
(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?
5.(2023春·福建泉州·九年级校联考期中)2019年年底以来,湖北省武汉市发现一种新型冠状病毒引起的急性呼吸道传染疾病。
(1)在新冠初期,人们因为不了解这种病毒所以也没有及时进行隔离,若有1人感染后经过两轮的传染将会有144人感染了“新冠”,求每一轮传染后平均一个人会传染了几个人
(2)后来,大家众志成城,全都隔离在家,但玲玲爷爷种的糖心苹果遇到了滞销,于是玲玲在朋友圈帮爷爷销售,糖心苹果的成本为8元/千克,她发现当售价为12元/千克时,每天可卖出40千克,而每涨1元时,每天就少卖出10千克.如果每天要达到150元的利润而且又最大限度地帮爷爷增加销量,请你帮玲玲确定销售单价.
6.(2023春·山西太原·九年级期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.
(1)求该商店11,12两个月的月均增长率;
(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
一元二次方程的运用-销售问题
知识回顾
常用公式:
(1)利润=售价-成本;
(2)利润=售价–成本价=标价×折扣–成本价.
(3)利润率=
(3)销售额=销售价×销售量.
(4)销售利润=(销售价–成本价)×销售量
(5)总利润=每件利润×销售量;
(6)每每问题中,单价每涨a元,少买y件。若涨价y元,则少买的数量为
典例精练
1.尊老爱幼是中华民族的传统美德,菜商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.不考虑其他因素的影响,若商店销售这款商品的利润要达到平均每天1280元,销售单价应降低多少元?
【解答】解:设销售单价应降低x元,
根据题意,得(25﹣15﹣x)(80+)=1280,
解得x1=2或x2=6,
答:销售单价应降低2元或6元.
2.今年大德福超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.
(1)求四、五这两个月的月平均增长率.
(2)从六月份起,商场为了减少库存,从而采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场月获利4250元?
【解答】解:(1)设四、五这两个月的月平均增长率为x,
依题意得:256(1+x)2=400,
解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).
答:四、五这两个月的月平均增长率为25%;
(2)设商品降价m元,则每件获利(40﹣m﹣25)元,月销售量为(400+5m)件,
依题意得:(40﹣m﹣25)(400+5m)=4250,
解得:m1=5,m2=﹣70(不合题意舍去).
答:当商品降价5元时,商场月获利4250元.
3.2022年4月8日,CCTV﹣13新闻频道《朝闻天下》,报道了山东新泰《香椿进入收获期,“椿”意盎然助增收》,我市香椿畅销全国各地.当地某电商对一款成本价为30元的香椿商品进行直播销售,如果按每件40元销售,平均每月可卖出600件.通过市场调查发现,每件香椿商品售价每上涨1元,其月销售量就将减少10件.为了实现平均每月12000元的销售利润,
(1)这种商品的售价应定为多少?
(2)这时商家每月能售出该香椿商品多少件?
【解答】解:(1)设这种商品的涨价x元,根据题意得,
(40+x﹣30)(600﹣10x)=12000,
解得,x1=20,x2=30,
40+20=60,40+30=70,
答:这种商品的售价应定为60元或70元;
(2)600﹣20×10=400,600﹣30×10=300,
答:这时商家每月能售出该香椿商品400件或300件.
4.某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数关系式;
(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
将(20,40),(30,20)代入y=kx+b得:,
解得:,
∴y与x之间的函数关系式为y=﹣2x+80.
(2)依题意得:(x﹣20)(﹣2x+80)=150,
整理得:x2﹣60x+875=0,
解得:x1=25,x2=35.
又∵要让利消费者,
∴x=25.
答:销售价应定为每千克25元.
5.(2023春·重庆云阳·九年级校联考期中)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国传染开来,与此同时医护人员一直坚守在抗击肺炎的前线,为我们保驾护航!罗曼·罗兰说:“凡是行为善良与高尚的人,定能因之而担当患难.”他们是最可亲可敬的人!由此,医疗物资护目镜的需求量大大增加,两江新区某护目镜生 产厂家自正月初三起便要求全体员工提前返岗,在接到单位的返岗通知后,员工们都毫无怨言,快速回到了自己的工作岗位,用自己的实际行动践行着一份责任和担当.已知该厂拥有两条不同的护目镜加工生产线A,B.原计划A生产线每小时生产护目镜400个,B生产线每小时生产护目镜500个.
(1)若生产线A,B一共工作12小时,且生产护目镜的总数量不少于5500个,则B生产线至少生产护目镜多少小时?
(2)原计划A,B生产线每天均工作8小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,A生产线每增加1小时,该生产线每小时的产量将减少10个,B生产线每增加1小时,该生产线每小时的产量将减少15个.这样一天生产的护目镜将比原计划多3300个,求该厂实际每天生产护目镜的时间.
【答案】(1)B生产线至少生产口罩7小时;(2)该厂实际每天生产口罩的时间为14h.
【分析】(1)设B生产线至少生产口罩x小时,根据生产护目镜的总数量不少于5500个列出不等式求解即可;
(2)设该厂实际每天生产口罩比原计划多的时间为,根据实际一天生产的护目镜将比原计划多个列出方程求解即可.
【详解】(1)解:设生产线至少生产口罩小时
解得:
答:生产线至少生产口罩小时.
(2)解:设该厂实际每天生产口罩比原计划多的时间为
解得:
生产时间:
答:设该厂实际每天生产口罩的时间为.
【点睛】此题主要考查了一元一次不等式和一元二次方程的实际应用,关键是正确理解题意,找出题目中的不等关系和等量关系,列出不等式和方程.
同步练习
1.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为( )
A.56元 B.57元 C.59元 D.57元或59元
【分析】将销售单价定为x元/件,则每星期可卖出[20(60﹣x)+300]件,根据总利润=每件的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【解析】将销售单价定为x元/件,则每星期可卖出[20(60﹣x)+300]件,
根据题意得:(x﹣40)[20(60﹣x)+300]=6080,
整理得:x2﹣115x+3304=0,
解得:x1=56,x2=59.
∵要使顾客获得实惠,
∴x=56.
故选:A.
2.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?
【分析】设应将每个口罩涨价x元,则每天可售出(200﹣10)件,根据总利润=每个的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【解析】设应将每个口罩涨价x元,则每天可售出(200﹣10)件,
依题意,得:(1+x)(200﹣10)=480,
化简,得:x2﹣9x+14=0,
解得:x1=2,x2=7.
又∵要让顾客得到实惠,
∴x=2.
答:应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.
3.某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?
【解答】解:设每件衬衫应降价x元,则销售每件衬衫的利润为(40﹣x)元,平均每天的销售量为(20+2x)件,
依题意,得:(40﹣x)(20+2x)=1200,
解得:x1=10,x2=20.
当x=10时,20+2x=40;
当x=20时,20+2x=60.
∵要使库存减少最快,
∴x=20.
答:当每件衬衫应降价20元时,商场平均每天盈利达到1200元.
4.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.
(1)求平均每次降价盈利的百分率;
(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?
【解答】(1)解:设每次下降的百分率为a,
根据题意,得:100(1﹣a)2=81,
解得:a=1.9(舍)或a=0.1=10%,
答:每次下降的百分率为10%;
(2)解:设每件应降价x元,
根据题意,得(81﹣x)(20+2x)=2940,
解得:x1=60,x2=11,
∵尽快减少库存,
∴x=60,
答:若商场每天要盈利2940元,每件应降价60元.
5.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量(桶)与每桶降价(元)()之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?
【解答】(1)解:设与销售单价之间的函数关系式为:,
将点、代入一次函数表达式得:,
解得:,
故函数的表达式为:;
(2)解:由题意得:,
整理,得.
解得,(舍去).
所以.
答:这种消毒液每桶实际售价43元.
6.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:
小王:该水果的进价是每千克22元;
小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.
根据他们的对话,解决下面所给问题:
(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?
(2)设该水果超市一天可获利润 元.求当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.
【解答】(1)解:设降低x元,超市每天可获得销售利润3640元,由题意得,
(38﹣x﹣22)(160+ ×120)=3640,
整理得x2﹣12x+27=0,
∴x=3或x=9.
∵要尽可能让顾客得到实惠,
∴x=9,
∴售价为:38﹣9=29元.
答:水果的销售价为每千克29元时,超市每天可获得销售利润3640元.
(2)解:设降低x元,由题得
y=(38﹣x﹣22)(160+ ×120)
∴y= 40x2+480x+2560
=-40(x 6) 2 +4000
当x=6时,y最大=4000.
∴售价为38﹣6=32元.
答:水果的销售价为每千克32元时,超市每天一天获利最大为4000元.
.
针对练习
某超市将进价为40元件的商品按50元件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价元,则依据题意可列方程为
A. B.
C. D.
【分析】设这种商品每件涨价元,则销售量为件,根据“总利润每件商品的利润销售量”列出一元二次方程.
【解析】解:设这种商品每件涨价元,则销售量为件,
根据题意,得:,
故选:C.
2.(2022·河北保定·一模)某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶,经市场调查表明,每瓶售价每增加1元,日均销售量减少20瓶.若超市计划该饮料日均总利润为700元,且尽快减少库存,则每瓶该饮料售价为( )
A.11 B.12 C.13 D.14
【答案】A
【分析】根据“总利润=每瓶利润日均销售量”列方程求解可得.
【详解】解:设每瓶售价x元时,所得日均总利润为700元,根据题意的,
,
解得x1=11, x2=13,
当x1=11时, ,当x2=13时, ,且,
尽快减少库存,
每瓶该饮料售价为11元.
故选:A.
【点睛】本题主要考查一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.
3.某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.
(1)当每箱水果降价10元,则每箱利润 元,平均每天可售出 箱.
(2)若销售该种水果平均每天盈利8100元,则每箱应降价多少元?
【分析】(1)利用每箱利润每箱降低的价格及平均每天的销售量,即可求出结论;
(2)设每箱应降价元,则每箱利润为元,平均每天可售出箱,利用平均每天销售该种水果获得的总利润每箱的利润平均每天的销售量,即可得出关于的一元二次方程,解之即可得出结论.
【解析】解:(1)根据题意,可知:当每箱水果降价10元时,每箱利润为(元,平均每天可售出(箱.
故答案为:50;160.
(2)设每箱应降价元,则每箱利润为元,平均每天可售出箱,
依题意得:,
整理得:,
解得:.
答:每箱应降价15元.
4.(2023春·重庆沙坪坝·九年级重庆南开中学校考开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).
(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?
(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?
【答案】(1)总共生产了9000袋手工汤圆
(2)促销时每袋应降价3元
【分析】(1)设总共生产了a袋手工汤圆,利用这21天生产的汤圆馅和汤圆粉恰好配套做等量关系列出方程即可;
(2)设促销时每袋应降价x元,利用最终获利40500元做等量关系列出方程即可.
【详解】(1)设总共生产了a袋手工汤圆,
,
经检验a=9000是原方程的解,
答:总共生产了9000袋手工汤圆
(2)设促销时每袋应降价x元,
当刚好10天全部卖完时,
,
∴方程无解
∴10天不能全部卖完
∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为
∵要促销
即促销时每袋应降价3元.
【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程,需要注意分情况讨论.
5.(2023春·福建泉州·九年级校联考期中)2019年年底以来,湖北省武汉市发现一种新型冠状病毒引起的急性呼吸道传染疾病。
(1)在新冠初期,人们因为不了解这种病毒所以也没有及时进行隔离,若有1人感染后经过两轮的传染将会有144人感染了“新冠”,求每一轮传染后平均一个人会传染了几个人
(2)后来,大家众志成城,全都隔离在家,但玲玲爷爷种的糖心苹果遇到了滞销,于是玲玲在朋友圈帮爷爷销售,糖心苹果的成本为8元/千克,她发现当售价为12元/千克时,每天可卖出40千克,而每涨1元时,每天就少卖出10千克.如果每天要达到150元的利润而且又最大限度地帮爷爷增加销量,请你帮玲玲确定销售单价.
【答案】(1)11人
(2)11元
【分析】(1)设每轮传染中平均一个人传染了x人,根据1人感染“新冠”经过两轮传染后共有144人感染“新冠”,列出一元二次方程,解之取其正值即可得出结论.
(2)设小玲应该将售价定为y元,则每天可以卖出千克,根据总利润=每斤的利润销售数量,列出一元二次方程,解之取其较小值即可得出结论.
【详解】(1)解:设每轮传染中平均一个人传染了x人,
依题意,得:,
即
解得:(不合题意,舍去).
答:每轮传染中平均一个人传染了11人.
(2)解:设玲玲应该将售价定为y元,则每天可以卖出千克,
依题意得:
,
,
,
最大限度的帮爷爷增加销量,
小玲应该将售价定位11元,
答:小玲应该将售价定为11元.
【点睛】此题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键
6.(2023春·山西太原·九年级期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.
(1)求该商店11,12两个月的月均增长率;
(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.
【答案】(1)
(2)2750元
【分析】(1)设该商店11,12两个月的月均增长率为,则该商店去年11月份售出50(1+x)台,12月份售出台,根据该商店去年第四季度累计售出182台,可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;
(2)设每台冰箱的售价为y元,则每台的销售利润为(y-2500)元,平均每天可售出台,利用总利润=每台的销售利润平均每天的销售量,可得出关于y的一元二次方程,解之即可得出结论.
【详解】(1)解:设该商店11,12两个月的月均增长率为x,则该商店去年11月份售出台,12月份售出台,
,
,
解得:(不符合题意,舍去).
答:该商店11,12两个月的月均增长率为;
(2)设每台冰箱的售价为y元,则每台的销售利润为(y-2500)元,平均每天可售出台,
根据题意得:(y-2500),
,
.
答:每台冰箱的售价为2750元.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)