中小学教育资源及组卷应用平台
高中数学重难点突破
专题十二 圆锥曲线的求值与求轨迹问题
知识归纳
一、椭圆秒杀小题常用结论
(1)椭圆定义:|MF1|+|MF2|=2a(2a>|F1F2|).如图(1)
图(1) 图(2) 图(3) 图(4)
(2)点P(x0,y0)和椭圆+=1(a>b>0)的关系
P(x0,y0)在椭圆内 +<1;P(x0,y0)在椭圆上 +=1;P(x0,y0)在椭圆外 +>1.
(3)如图(5),椭圆的通径(过焦点且垂直于长轴的弦)长为|AB|=,通径是最短的焦点弦.过焦点最长弦为长轴.过原点最长弦为长轴长2a,最短弦为短轴长2b.
图(5) 图(6) 图(7)
(4)焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中如图(6):
①△PF1F2的周长为2(a+c).②S=b2tan.
(5)如图(7)P为椭圆+=1(a>b>0)上的动点,F1,F2分别为椭圆的左、右焦点,当椭圆上点P在短轴端点时与两焦点连线的夹角最大.
(6)P为椭圆+=1(a>b>0)上的点,F1,F2分别为椭圆的左、右焦点,则P到焦点的最长距离为a+c,最短距离为a-c.
(7)如图(8)设P,A,B是椭圆+=1(a>b>0)上不同的三点,其中A,B关于原点对称,
则kPA·kPB=-=e2-1.
图(8) 图(9)
(8)如图(9)设A,B是椭圆+=1(a>b>0)上不同的两点,P为弦AB的中点,则kAB·kOP=-=e2-1.
二、双曲线线秒杀小题常用结论
(1)双曲线定义:||MF1|-|MF2||=2a(2a<|F1F2|).如图(10)
图(10) 图(11) 图(12)
(2)如图(11)双曲线的焦点到其渐近线的距离为b.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
(3)如图(12)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为,异支的弦中最短的为实轴,其长为2a;
(4)如图(13)P是双曲线上不同于实轴两端点的任意一点,F1、F2分别为双曲线的左、右焦点,
则S△PF1F2=b2,其中θ为∠F1PF2.
(5)如图(14)双曲线-=1(a>0,b>0)的渐近线y=±x的斜率k=±与离心率e的关系:
e==.
图(13) 图(14) 图(15) 图(16)
(6)若P是双曲线右支上一点,F1、F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a;
(7)如图(15)设P,A,B是双曲线-=1(a>b>0)上不同的三点,其中A,B关于原点对称,
则kPA·kPB==e2-1.
(8)如图(16)设A,B是双曲线-=1(a>b>0)上不同的两点,P为弦AB的中点,则kAB·kOP==e2-1.
三、抛物线秒杀小题常用结论
(1)抛物线定义:|MF|=d(d为M点到准线的距离).如图(17)
(2)设A,B是抛物线y2=2px(p>0)上不同的两点,P为弦AB的中点,则kAB·y0=p.
(3)以抛物线y2=2px(p>0)为例,设AB是抛物线的过焦点的一条弦(焦点弦),F是抛物线的焦点,A(x1,y1),B(x2,y2),A、B在准线上的射影为A1、B1,则有以下结论:
①x1x2=,y1y2=-p2;
②若直线AB的倾斜角为θ,则|AF|=,|BF|=;如图(18)
③+=为定值;如图(18)
④|AB|=x1+x2+p=(其中θ为直线AB的倾斜角),抛物线的通径长为2p,通径是最短的焦点弦;如图(18)
⑤S△AOB=(其中θ 为直线AB的倾斜角);如图(18)
⑥以AB为直径的圆与抛物线的准线相切;如图(19)
图(17) 图(18) 图(19) 图(20)
⑦以AF(或BF)为直径的圆与y轴相切;如图(20,21)
图(21) 图(22) 图(23)
⑧以A1B1为直径的圆与直线AB相切,切点为F,∠A1FB1=90°;如图(22)
⑨A,O,B1三点共线,B,O,A1三点也共线;
⑩已知M(x0,y0)是抛物线y2=2px(p>0)上任意一点,点N(a,0)是抛物线的对称轴上一点,
则|MN|min=
(4)如图(23)所示,AB是抛物线x2=2py(p>0)的过焦点的一条弦(焦点弦),分别过A,B作抛物线的切线,交于点P,连接PF,则有以下结论:
①点P的轨迹是一条直线,即抛物线的准线l:y=-;②两切线互相垂直,即PA⊥PB;
③PF⊥AB;④点P的坐标为.
四、圆锥曲线的焦比定理
过圆锥曲线焦点F的弦AB,且AB的倾斜角为,若,即.
典例分析
一、椭圆模型
【例1-1】如图,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
答案 C 解析 由题意可得c=5,设右焦点为F′,连接PF′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,∴∠PFF′+∠OF′P=∠FPO+∠OPF′,∴∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|===8,由椭圆的定义,得|PF|+|PF′|=2a=6+8=14,从而a=7,a2=49,于是b2=a2-c2=49-52=24,∴椭圆C的方程为+=1,故选C.
【例1-2】已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
A.+y2=1 B.+=1 C.+=1 D.+=1
答案 B 解析 解法一 由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sinθ=.在等腰三角形ABF1中,cos2θ==,所以=1-2,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1.故选B.
解法二 设椭圆的标准方程为+=1(a>b>0).由椭圆的定义可得|AF1|+|AB|+|BF1|=4a.∵|AB|=|BF1|,|AF2|=2|F2B|,∴|AB|=|BF1|=|AF2|,∴|AF1|+3|AF2|=4a.又∵|AF1|+|AF2|=2a,∴|AF1|=|AF2|=a,∴点A是椭圆的短轴端点,如图.不妨设A(0,-b),由F2(1,0),=2,得B.由点B在椭圆上,得+=1,得a2=3,b2=a2-c2=2.∴椭圆C的方程为+=1.故选B.
【例1-3】设F1,F2分别是椭圆E:(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为__________.
答案 解析 设B在x轴上的射影为B0,由题意得,,得B0坐标为,即B点横坐标为.设直线AB的斜率为k,又直线过点F1(-c,0),∴直线AB的方程为y=k(x+c).由得(k2+b2)x2+2ck2x+k2c2-b2=0,其两根为和c,由韦达定理得解之,得,∴b2=1-.∴椭圆方程为.
【例1-4】已知点P(x,y)在椭圆+=1上,F1,F2是椭圆的两个焦点,若△PF1F2的面积为18,则∠F1PF2的余弦值为________.
答案 解析 椭圆+=1的两个焦点为F1(0,-8),F2(0,8),由椭圆的定义知|PF1|+|PF2|=20,两边平方得|PF1|2+|PF2|2+2|PF1||PF2|=202,由余弦定理得|PF1|2+|PF2|2-2|PF1||PF2|·cos∠F1PF2=162,两式相减得2|PF1||PF2|(1+cos∠F1PF2)=144.又S△PF1F2=|PF1||PF2|sin∠F1PF2=18,所以1+cos∠F1PF2=2sin∠F1PF2,解得cos∠F1PF2=.
【例1-5】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,则直线OM与直线l的斜率之积为( )
A.-9 B.- C.- D.-3
答案 A 解析 设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入9x2+y2=m2,得(k2+9)x2+2kbx+b2-m2=0,故xM==-,yM=kxM+b=,故直线OM的斜率kOM==-,所以kOM·k=-9,即直线OM与直线l的斜率之积为-9.
【例1-6】已知椭圆C:+=1(a>b>0)及点B(0,a),过点B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则∠ABF=( )
A.60° B.90° C.120° D.150°
答案 B 解析 由题意知,切线的斜率存在,设切线方程y=kx+a(k>0),与椭圆方程联立消去y整理得(b2+a2k2)x2+2ka3x+a4-a2b2=0,由Δ=(2ka3)2-4(b2+a2k2)(a4-a2b2)=0,得k=,从而y=x+a交x轴于点A,又F(c,0),易知·=0,故∠ABF=90°.
【例1-7】已知P为椭圆C:+=1上的一个动点,F1,F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处的切线距离为d,若|PF1|·|PF2|=,则d=________.
答案 解析 法一:因为点P在椭圆上,所以有|PF1|+|PF2|=4,又因为|PF1|·|PF2|=,由余弦定理可得cos∠F1PF2==,所以有sin∠F1PF2=,所以△F1PF2的面积为S=××=×2×yp,解得yp=,因为点P在椭圆上,所以xp=.所以过该点的椭圆的切线方程为+=1,即为x+y=.所以原点O到直线的距离为d==.
法二:设P(m,n),则切线方程为+=1,即3mx+4ny-12=0.所以原点O到该切线的距离d=.因为点P(m,n)在椭圆上,所以+=1,所以有n2=3-,所以d=.因为|PF1||PF2|=,所以有 =,即有 =4-m2=,解得16-m2=,所以d==.
【例1-8】如图所示,A1,A2是椭圆C:+=1的短轴端点,点M在椭圆上运动,且点M不与A1,A2重合,点N满足NA1⊥MA1,NA2⊥MA2,则=( )
A. B. C. D.
答案 C 解析 由题意以及选项的值可知:是常数,取M为椭圆的左顶点,由椭圆的性质可知N在x的正半轴上,如图:则A1(0,2),A2是(0,-2),M(-3,0),由OM·ON=OA,可得ON=,则====,故选C.
【例1-9】在平面直角坐标系xOy中,直线x+y-2=0与椭圆C:+=1(a>b>0)相切,且椭圆C的右焦点F(c,0)关于直线l:y=x的对称点E在椭圆C上,则△OEF的面积为( )
A. B. C.1 D.2
答案 C 解析 联立方程可得消去x,化简得(a2+2b2)y2-8b2y+b2(8-a2)=0,由Δ=0得2b2+a2-8=0.设F′为椭圆C的左焦点,连接F′E,易知F′E∥l,所以F′E⊥EF,又点F到直线l的距离d==,所以|EF|=,|F′E|=2a-|EF|=,在Rt△F′EF中,|F′E|2+|EF|2=|F′F|2,化简得2b2=a2,代入2b2+a2-8=0得b2=2,a=2,所以|EF|=|F′E|=2,所以S△OEF=S△F′EF=1.
二、双曲线模型
【例2-1】已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )
A.-=1 B.-=1 C.-y2=1 D.x2-=1
答案 D 解析 根据题意画出草图如图所示.
由△AOF是边长为2的等边三角形得到∠AOF=60°,c=|OF|=2.又点A在双曲线的渐近线y=x上,∴=tan 60°=.又a2+b2=4,∴a=1,b=,∴双曲线的方程为x2-=1,故选D
【例2-2】已知双曲线-=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD为矩形.双曲线的渐近线方程为y=±x,圆的方程为x2+y2=4,不妨设交点A在第一象限,由y=x,x2+y2=4得xA=,yA=,故四边形ABCD的面积为4xAyA==2b,解得b2=12,故所求的双曲线方程为-=1,选D.
【例2-3】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=( )
A.3 B.4 C.5 D.6
答案 A 解析 如图,设MN的中点为P.∵F1为MA的中点,F2为MB的中点,∴|AN|=2|PF1|,|BN|=2|PF2|,又|AN|-|BN|=12,∴|PF1|-|PF2|=6=2a,∴a=3.故选A.
【例2-4】过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有( )
A.1条 B.2条 C.3条 D.4条
答案 B 解析 依题意,双曲线的渐近线方程是y=±x,点P在直线y=x上.①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l与双曲线有且仅有一个公共点(2,0),满足题意.②当直线l的斜率存在时,设直线l的方程为y-1=k(x-2),即y=kx+1-2k,由消去y得x2-4(kx+1-2k)2=4,即(1-4k2)x2-8(1-2k)kx-4(1-2k)2-4=0,(*).若1-4k2=0,则k=±,当k=时,方程(*)无实数解,因此k=不满足题意;当k=-时,方程(*)有唯一实数解,因此k=-满足题意.若1-4k2≠0,即k≠±,此时Δ=64k2(1-2k)2+16(1-4k2)[(1-2k)2+1]=0不成立,因此满足题意的实数k不存在.综上所述,满足题意的直线l共有2条.
【例2-5】已知双曲线C:-=1(a,b>0)的右顶点A和右焦点F到一条渐近线的距离之比为1∶,则C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±x
答案 A 解析 由双曲线方程可得渐近线为:y=±x,A(a,0),F(c,0),则点A到渐近线距离d1==,点F到渐近线距离d2===b,∴d1∶d2=∶b=a∶c=1∶,即c=a,则===1,∴双曲线渐近线方程为y=±x.故选A.
【例2-6】已知双曲线Γ:-=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记∠BAC=θ,若Γ的离心率为,则( )
A.θ∈ B.θ= C.θ∈ D.θ=
答案 B 解析 ∵e==,∴c=a,∴b2=c2-a2=a2,∴双曲线方程可变形为x2-y2=a2.设
B(x0,y0),由对称性可知C(-x0,y0),∵点B(x0,y0)在双曲线上,∴x-y=a2.∵A(a,0),∴=(x0-a,y0),=(-x0-a,y0),∴·=(x0-a)·(-x0-a)+y=a2-x+y=0,∴⊥,即θ=.故选B.
【例2-7】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO交双曲线C左支于点M,直线PF2交双曲线C右支于点N,若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±2x
答案 A 解析 由题意得,|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|=2a,由于P,M关于原点对称,F1,F2关于原点对称,∴线段PM,F1F2互相平分,四边形PF1MF2为平行四边形,PF1∥MF2,∵∠MF2N=60°,∴∠F1PF2=60°,由余弦定理可得4c2=16a2+4a2-2·4a·2a·cos60°,∴c=a,∴b==a.∴=,∴双曲线C的渐近线方程为y=±x.故选A.
【例2-8】如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上、下端点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是________.
答案 解析 设双曲线的标准方程为-=1(a>0,b>0),由e==2知,c=2a,又c2=a2
+b2,故b=a,所以A(0,a),C(0,-a),B(-a,0),F(-2a,0),则=(a,a),=(-2a,a),结合题图可知,cos∠BDF=cos<,>===.
抛物线模型
【例3-1】已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过点F的直线与抛物线C交于A,B两点,若·=-12,则抛物线C的方程为( )
A.x2=8y B.x2=4y C.y2=8x D.y2=4x
答案 C 解析 由题意,设抛物线方程为y2=2px(p>0),直线方程为x=my+,联立消
去x得y2-2pmy-p2=0,显然方程有两个不等实根.设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=-p2,得·=x1x2+y1y2=+y1y2=m2y1y2+(y1+y2)++y1y2=-p2=-12,得p=4(舍负),即抛物线C的方程为y2=8x.
【例3-2】设抛物线C:y2=2px(p>0)的焦点为F,点M在抛物线C上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x
答案 C 解析 因为抛物线C的方程为y2=2px(p>0),所以焦点F.设M(x,y),由抛物线的
性质可得|MF|=x+=5,所以x=5-.因为圆心是MF的中点,所以根据中点坐标公式可得圆心横坐标为,又由已知可得圆的半径也为,故可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则点M的纵坐标为4,所以M.将点M的坐标代入抛物线方程,得p2-10p+16=0,所以p=2或p=8,所以抛物线C的方程为y2=4x或y2=16x,故选C.
【例3-3】设抛物线C:y2=3x的焦点为F,点A为C上一点,若|FA|=3,则直线FA的倾斜角为( )
A. B. C.或 D.或
答案 C 解析 如图,作AH⊥l于H,则|AH|=|FA|=3,作FE⊥AH于E,则|AE|=3-=,在Rt△AEF中,cos∠EAF==,∴∠EAF=,即直线FA的倾斜角为,同理点A在x轴下方时,直线FA的倾斜角为.
【例3-4】在直角坐标系xOy中,抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若∠NFR=60°,则|FR|等于( )
A.2 B. C.2 D.3
答案 A 解析 由抛物线C:y2=4x,得焦点F(1,0),准线方程为x=-1,
因为M,N分别为PQ,PF的中点,所以MN∥QF,所以四边形QMRF为平行四边形,|FR|=|QM|,又由PQ垂直l于点Q,可知|PQ|=|PF|,因为∠NFR=60°,所以△PQF为等边三角形,所以FM⊥PQ,所以|FR|=2,故选A.
【例3-5】过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B两点,若|AF|=2|BF|=6,则p=________.
答案 4 解析 [一般解法] 设AB的方程为x=my+,A(x1,y1),B(x2,y2),且x1>x2,将直线AB的方程代入抛物线方程得y2-2pmy-p2=0,所以y1y2=-p2,4x1x2=p2.设抛物线的准线为l,过A作AC⊥l,垂足为C,过B作BD⊥l,垂足为D,因为|AF|=2|BF|=6,根据抛物线的定义知,|AF|=|AC|=x1+=6,|BF|=|BD|=x2+=3,所以x1-x2=3,x1+x2=9-p,所以(x1+x2)2-(x1-x2)2=4x1x2=p2,即18p-72=0,解得p=4.
[应用结论]法一:设直线AB的倾斜角为α,分别过A,B作准线l的垂线AA′,BB′,垂足分别为A′,B′(图略),则|AA′|=6,|BB′|=3,过点B作AA′的垂线BC,垂足为C,则|AC|=3,|BC|=6,易知∠BAC=α,所以sin α==,所以|AB|==9,解得p=4.
法二:设直线AB的倾斜角为α,则|AF|=,|BF|=,则有=2×,解得cos α=,又|AF|==6,所以p=4.
法三:∵|AF|=6,|BF|=3,=+=,∴p=4.
【例3-6】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为( )
A.5 B.6 C. D.
答案 C 解析 [一般解法] 如图,设l与x轴交于点M,过点A作AD⊥l交l于点D,由抛物线的定义知,|AD|=|AF|=4,由F是AC的中点,知|AD|=2|MF|=2p,所以2p=4,解得p=2,所以抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4,所以x1=3,可得y1=2,所以A(3,2),又F(1,0),所以直线AF的斜率k==,所以直线AF的方程为y=(x-1),代入抛物线方程y2=4x得3x2-10x+3=0,所以x1+x2=,|AB|=x1+x2+p=.故选C.
[应用结论]法一 设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4,所以x1=3,又x1x2==1,所以x2=,所以|AB|=x1+x2+p=3++2=.
法二 因为+=,|AF|=4,所以|BF|=,所以|AB|=|AF|+|BF|=4+=.
【例3-7】已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
答案 2 解析 法一:由题意知,抛物线的焦点为(1,0),则过C的焦点且斜率为k的直线方程为y=k(x-1)(k≠0),由消去y得k2(x-1)2=4x,即k2x2-(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1.由消去x得y2=4,即y2-y-4=0,则y1+y2=,y1y2=-4.由∠AMB=90°,得·=(x1+1,y1-1)·(x2+1,y2-1)=x1x2+x1+x2+1+y1y2-(y1+y2)+1=0,将x1+x2=,x1x2=1与y1+y2=,y1y2=-4代入,得k=2.
法二:设抛物线的焦点为F,A(x1,y1),B(x2,y2),则所以y-y=4(x1-x2),则k==.取AB的中点M′(x0,y0),分别过点A,B作准线x=-1的垂线,垂足分别为A′,B′,又∠AMB=90°,点M在准线x=-1上,所以|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).又M′为AB的中点,所以MM′平行于x轴,且y0=1,所以y1+y2=2,所以k=2.
【例3-8】过点P(2,-1)作抛物线x2=4y的两条切线,切点分别为A,B,PA,PB分别交x轴于E,F两点,O为坐标原点,则△PEF与△OAB的面积之比为( )
A. B. C. D.
答案 C 解析 解法1 设过P点的直线方程为y=k(x-2)-1,代入x2=4y可得x2-4kx+8k+4=0,令Δ=0,可得16k2-4(8k+4)=0,解得k=1±.∴直线PA,PB的方程分别为y=(1+)(x-2)-1,y=(1-)·(x-2)-1,分别令y=0,可得E(+1,0),F(1-,0),即|EF|=2.∴S△PEF=×2×1=,易求得A(2+2,3+2),B(2-2,3-2),∴直线AB的方程为y=x+1,|AB|=8,又原点O到直线AB的距离d=,∴S△OAB=×8×=2.∴△PEF与△OAB的面积之比为.故选C.
解法2 设A(x1,y1),B(x2,y2),则点A,B处的切线方程为x1x=2(y+y1),x2x=2(y+y2),所以E,F,即E,F,因为这两条切线都过点P(2,-1),则所以lAB:x=-1+y,即lAB过定点(0,1),则==.
【例3-9】已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k的值为( )
A. B. C. D.
答案 D 解析 解法1 设A(x1,y1),B(x2,y2),则x1>0,x2>0,∴|FA|=x1+2,|FB|=x2+2,∴x1
+2=2x2+4,∴x1=2x2+2.由,得k2x2+(4k2-8)x+4k2=0,∴x1x2=4,x1+x2==-4.由,得x+x2-2=0,∴x2=1,∴x1=4,∴-4=5,∴k2=,k=.
解法2 设抛物线C:y2=8x的准线为l,易知l:x=-2,直线y=k(x+2)恒过定点P(-2,0),如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,由|FA|=2|FB|,知|AM|=2|BN|,所以点B为线段AP的中点,连接OB,则|OB|=|AF|,所以|OB|=|BF|,所以点B的横坐标为1,因为k>0,所以点B的坐标为(1,2),所以k==.故选D.
【例3-10】已知抛物线C:y2=8x的焦点为F ,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点P(10,0),则△AOB的面积为( )
A.4 B.4 C.8 D.8
答案 C 解析 设直线l:x=ty+2,A(x1,y1),B(x2,y2),则由可以得到y2-8ty-16=0,所以AB的中点M(4t2+2,4t),线段AB的垂直平分线与x轴交于点P(10,0),故t≠0.所以AB的中垂线的方程为y=-(x-4t2-2)+4t=-·x+8t+,令y=0可得x=8t2+2,解方程10=8t2+2得t=±1.此时AB= |y1-y2|=8 =16,O到AB的距离为d==,所以SΔOAB=×16×=8.故选C.
【例3-11】已知点P(-1,0),设不垂直于x轴的直线l与抛物线y2=2x交于不同的两点A,B,若x轴是∠APB的角平分线,则直线l一定过点( )
A. B.(1,0) C.(2,0) D.(-2,0)
答案 B 解析 根据题意,直线的斜率存在且不等于零,设直线的方程为x=ty+m(t≠0),与抛物线
方程联立,消元得y2-2ty-2m=0,设A(x1,y1),B(x2,y2),因为x轴是∠APB的角平分线,所以AP,BP的斜率互为相反数,所以+=0,所以2ty1y2+(m+1)(y1+y2)=0,结合根与系数之间的关系,整理得出2t(-2m)+2tm+2t=0,2t(m-1)=0,因为t≠0,所以m=1,所以过定点(1,0),故选B.
【例3-12】在直线y=-2上任取一点Q,过Q作抛物线x2=4y的切线,切点分别为A,B,则直线AB恒过的点的坐标为( )
A.(0,1) B.(0,2) C.(2,0) D.(1,0)
答案 B 解析 设Q(t,-2),A(x1,y1),B(x2,y2),抛物线方程变为y=x2,则y′=x,则在点A
处的切线方程为y-y1=x1(x-x1),化简得y=x1x-y1,同理,在点B处的切线方程为y=x2x-y2,又点Q(t,-2)的坐标适合这两个方程,代入得-2=x1t-y1,-2=x2t-y2,这说明A(x1,y1),B(x2,y2)都满足方程-2=xt-y,即直线AB的方程为y-2=tx,因此直线AB恒过点(0,2).
【例3-13】如图,过抛物线y2=4x的焦点F作倾斜角为α的直线l,l与抛物线及其准线从上到下依次交于A、B、C点,令=λ1,=λ2,则当α=时,λ1+λ2的值为( )
A.4 B.5 C.6 D.8
答案 B 解析 由题意知焦点的坐标为F(1,0).设A(x1,y1),B(x2,y2),当α=时,直线AB的方程
为y=x-,与抛物线方程联立得3x2-10x+3=0,∴x1+x2=,x1x2=1,解得x1=3,x2=,由题图可知,λ1====3,∵α=,∴λ2==2,∴λ1+λ2=5.故选B.
【例3-14】如图所示,抛物线y=x2,AB为过焦点F的弦,过A,B分别作抛物线的切线,两切线交于点M,设A(xA,yA),B(xB,yB),M(xM,yM),则:①若AB的斜率为1,则|AB|=4;②|AB|min=2;③yM=-1;④若AB的斜率为1,则xM=1;⑤xA·xB=-4.以上结论正确的个数是( )
A.1 B.2 C.3 D.4
答案 B 解析 由题意得,焦点F(0,1),对于①,lAB的方程为y=x+1,与抛物线的方程联立,得
消去x,得y2-6y+1=0,所以yA+yB=6,则|AB|=yA+yB+p=8,则①错误;对于②,|AB|min=2p=4,则②错误;因为y′=,则lAM:y-yA=(x-xA),即y=xAx-,lBM:y-yB=(x-xB),即y=xBx-,联立lAM与lBM的方程得解得M.设lAB的方程为y=kx+1,与抛物线的方程联立,得消去y,得x2-4kx-4=0,所以xA+xB=4k,xA·xB=-4,所以yM=-1,③和⑤均正确;对于④,当AB的斜率为1时,xM=2,则④错误,故选B.
四、含两种曲线模型
【例4-1】(2019·浙江)已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.
答案 解析 法一:依题意,设点P(m,n)(n>0),由题意知F(-2,0),所以线段FP的中点M在圆x2+y2=4上,所以2+2=4,①.又点P(m,n)在椭圆+=1上,所以+=1,②.联立①②,消去n,得4m2-36m-63=0,所以m=-或m=(舍去),n=,所以kPF==.
法二:如图,取PF的中点M,连接OM,由题意知|OM|=|OF|=2,设椭圆的右焦点为F1,连接PF1,在△PFF1中,OM为中位线,所以|PF1|=4,由椭圆的定义知|PF|+|PF1|=6,所以|PF|=2.因为M为PF的中点,所以|MF|=1.在等腰三角形OMF中,过O作OH⊥MF于点H,所以|OH|==,所以kPF=tan∠HFO==.
【例4-2】如图,已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,过点F1的直线与圆x2+y2=1相切于点T,与双曲线的左、右两支分别交于A,B,若|F2B|=|AB|,则b的值是________.
答案 1+ 解析 法一:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=,sin∠F2F1A=,所以A,将点A的坐标代入双曲线得-=1,化简得b6-4b5+5b4-4b3-4=0,得(b2-2b-2)(b4-2b3+3b2-2b+2)=0,而b4-2b3+3b2-2b+2=b2(b-1)2+b2+1+(b-1)2>0,故b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
法二:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接AF2,则|AF2|=2+|AF1|=4.连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=.在△AF1F2中,由余弦定理得,cos∠F2F1A==,所以c2-3=2b,又在双曲线中,c2=1+b2,所以b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
【例4-3】已知双曲线C:-=1(a>0,b>0)的焦距为2c,直线l过点且与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为半径的圆与直线l交于M,N两点,若|MN|=c,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±4x
答案 B 解析 方法一 由题意可设渐近线方程为y=x,则直线l的斜率kl=-,直线l的方程为y=-,整理可得ax+by-a2=0.焦点(c,0)到直线l的距离d==,则弦长为2=2=c,整理可得c4-9a2c2+12a3c-4a4=0,即e4-9e2+12e-4=0,分解因式得=0.又双曲线的离心率e>1,则e==2,所以= ==,所以双曲线C的渐近线方程为y=±x.
方法二 圆心到直线l的距离为=,∴=,∴c2-3ac+2a2=0,∴c=2a,b=a,∴渐近线方程为y=±x.
【例4-4】已知F为抛物线y2=4x的焦点,过点F的直线交抛物线于A,B两点(点A在第一象限),若=3,则以AB为直径的圆的标准方程为( )
A.2+(y-2)2= B.(x-2)2+(y-2)2=
C.(x-5)2+(y-2)2=64 D.(x-2)2+(y-2)2=64
答案 A 解析 如图,作出抛物线的准线l:x=-,设A、B在l上的射影分别是C、D,
连接AC、BD,过B作BE⊥AC于E.∵=3,∴设|AF|=3m,|BF|=m,∵点A、B在抛物线上,∴|AC|=3m,|BD|=m.因此,在Rt△ABE中,|AB|=4m,|AE|=2m,∴cos∠BAE=,∴∠BAE=60°,∴直线AB的倾斜角为60°,即直线AB的斜率k=tan 60°=,∴直线AB的方程为y=(x-),代入抛物线方程得3x2-10x+9=0.∴xA+xB=,xA·xB=3.∴yA+yB=(xA-)+(xB-)=4,|AB|=xA+xB+p=,∴AB中点的坐标为,即.则以AB为直径的圆的标准方程为2+(y-2)2=.故选A.
【例4-5】已知曲线C1是以原点O为中心,F1,F2为焦点的椭圆,曲线C2是以O为顶点、F2为焦点的抛物线,A是曲线C1与C2的交点,且∠AF2F1为钝角,若|AF1|=,|AF2|=,则△AF1F2的面积是( )
A. B.2 C. D.4
答案 C 解析 画出图形如图所示,AD⊥F1D,根据抛物线的定义可知|AF2|=|AD|=,故cos∠F1AD=,也即cos∠AF1F2=,在△AF1F2中,由余弦定理得=,解得|F1F2|=2或|F1F2|=3,由于∠AF2F1为钝角,故|AD|>|F1F2|,所以|F1F2|=3舍去,故|F1F2|=2.而sin∠AF1F2==,所以S△AF1F2=××2×=.故选C.
【例4-6】在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
答案 y=±x 解析 法一 设A(xA,yA),B(xB,yB),由抛物线定义可得|AF|+|BF|=yA++yB+=4× yA+yB=p,由可得a2y2-2pb2y+a2b2=0,所以yA+yB==p,解得a=b,故该双曲线的渐近线方程为y=±x.
法二 (点差法)设A(x1,y1),B(x2,y2),由抛物线的定义可知|AF|=y1+,|BF|=y2+,|OF|=,由|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=2p,得y1+y2=p.易知直线AB的斜率kAB==eq \f(\f(x,2p)-\f(x,2p),x2-x1)=.由eq \b\lc\{(\a\vs4\al\co1(\f(x,a2)-\f(y,b2)=1,,\f(x,a2)-\f(y,b2)=1,))得kAB===·,则·=,所以= =,所以双曲线的渐近线方程为y=±x.
五、动点的轨迹方程
求动点轨迹方程的六大方法
1.待定系数法;2.直译法;3.定义法;4.代入法;5.参数法;6.交轨法.
【例5-1】设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是( )
A.y2=2x B.(x-1)2+y2=4 C.y2=-2x D.(x-1)2+y2=2
答案 D 解析 如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,又∵|PA|=1,∴|PM|==,即|PM|2=2,∴(x-1)2+y2=2.
【例5-2】设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,=+,则点M的轨迹方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
答案 A 解析 设M(x,y),A(x0,0),B(0,y0),由=+,得(x,y)=(x0,0)+(0,y0),则解得由|AB|=5,得+=25,化简得+=1.
【例5-3】已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( )
A.-=1 B.+=1 C.-=1 D.+=1
答案 D 解析 设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,所以a=8,c=4,b==4,故所求的轨迹方程为+=1.
【例5-4】在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为________.
答案 -=1(x>) 解析 以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E,F分别为两个切点.
则|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.∴|AB|-|AC|=2<|BC|=4,∴点A的轨迹是以B,C为焦点的双曲线的右支(y≠0)且a=,c=2,∴b=,∴轨迹方程为-=1(x>).
同步练习
1.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,左、右顶点为M,N,过F2的直线l交C于A,B两点(异于M,N),△AF1B的周长为4,且直线AM与AN的斜率之积为-,则C的方程为( )
A.+=1 B.+=1 C.+=1 D.+y2=1
1.答案 C 解析 由△AF1B的周长为4,可知|AF1|+|AF2|+|BF1|+|BF2|=4a=4,解得a=,
则M,N(,0).设点A(x0,y0)(x0≠±),由直线AM与AN的斜率之积为-,可得·=-,即y=-(x-3),①.又+=1,所以y=b2,②.由①②解得b2=2.所以C的方程为+=1.
2.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则椭圆E的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
2.答案 D 解析 由题意知直线AB的斜率k==,设A(x1,y1),B(x2,y2),则①-②整理得=-·,即k=-×=,∴=.又a2-b2=c2=9,∴a2=18,b2=9.∴椭圆E的方程为+=1.
3.已知F1,F2为椭圆C:+=1(a>b>0)的左、右焦点,过原点O且倾斜角为30°的直线l与椭圆C的一个交点为A,若AF1⊥AF2,S△F1AF2=2,则椭圆C的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
3.答案 A 解析 因为点A在椭圆上,所以|AF1|+|AF2|=2a,对其平方,得|AF1|2+|AF2|2+2|AF1||AF2|
=4a2,又AF1⊥AF2,所以|AF1|2+|AF2|2=4c2,则2|AF1||AF2|=4a2-4c2=4b2,即|AF1|·|AF2|=2b2,所以S△F1AF2=|AF1||AF2|=b2=2.又△AF1F2是直角三角形,∠F1AF2=90°,且O为F1F2的中点,所以|OA|=|F1F2|=c,由已知不妨设A点在第一象限,则∠AOF2=30°,所以A(c,c),则S=|F1F2|·c=c2=2,c2=4,故a2=b2+c2=6,所以椭圆方程为+=1,故选A.
4.设P为椭圆C:+=1上一点,F1,F2分别是椭圆C的左、右焦点,且△PF1F2的重心为G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为( )
A.24 B.12 C.8 D.6
4.答案 C 解析 ∵P为椭圆C:+=1上一点,|PF1|∶|PF2|=3∶4,|PF1|+|PF2|=2a=14,∴|PF1|=6,|PF2|=8,又∵|F1F2|=2c=2=10,∴易知△PF1F2是直角三角形,S△PF1F2=|PF1|·|PF2|=24,∵△PF1F2的重心为点G,∴S△PF1F2=3S△GPF1,∴△GPF1的面积为8,故选C
5.已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于( )
A. B.3 C.2 D.4
5.答案 B 解析 由已知得双曲线的两条渐近线方程为y=± x.设两渐近线的夹角为2α,则有tan α==,所以α=30°.所以∠MON=2α=60°.又△OMN为直角三角形,由于双曲线具有对称性,不妨设MN⊥ON,如图所示.
在Rt△ONF中,|OF|=2,则|ON|=.则在Rt△OMN中,|MN|=|ON|·tan 2α=·tan 60°=3.故选B.
6.已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
6.答案 C 解析 因为双曲线的离心率为2,所以=2,c=2a,b=a,不妨令A(2a,3a),B(2a,-3a),双曲线其中一条渐近线方程为y=x,所以d1==,d2==;依题意得:+=6,解得:a=,b=3,所以双曲线方程为:-=1.
7.双曲线-=1(a,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的角平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为( )
A.-y2=1 B.x2-=1 C.x2-=1 D.-y2=1
7.答案 B 解析 ∵∠F1PF2的角平分线为l,点F1关于l的对称点为Q,∴|PF1|=|PQ|,P,F2,Q三点共线,而|PF1|-|PF2|=2a,∴|PQ|-|PF2|=2a,即|F2Q|=2=2a,解得a=1.又e==,∴c=,∴b2=c2-a2=2,∴双曲线的方程为x2-=1.故选B.
8.已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P是双曲线上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为,则双曲线的渐近线方程为( )
A.y=±2x B.y=±x C.y=±x D.y=±x
8.答案 D 解析 不妨设P为双曲线右支上一点,则|PF1|>|PF2|,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,所以|PF1|=4a,|PF2|=2a.又因为所以∠PF1F2为最小内角,故∠PF1F2=.由余弦定理,可得=,即(a-c)2=0,所以c=a,则b=a,所以双曲线的渐近线方程为y=±x.
9.过点P(4,2)作一直线AB与双曲线C:-y2=1相交于A,B两点,若P为AB的中点,则|AB|=( )
A.2 B.2 C.3 D.4
9.答案 D 解析 法一:由已知可得点P的位置如图所示,且直线AB的斜率存在,设AB的斜率为k,则AB的方程为y-2=k(x-4),即y=k(x-4)+2,由消去y得(1-2k2)x2+(16k2-8k)x-32k2+32k-10=0,设A(x1,y1),B(x2,y2),由根与系数的关系得x1+x2=,x1x2=,因为P(4,2)为AB的中点,所以=8,解得k=1,满足Δ>0,所以x1+x2=8,x1x2=10,所以|AB|=×=4,故选D.
法二:由已知可得点P的位置如法一中图所示,且直线AB的斜率存在,设AB的斜率为k,则AB的方程为y-2=k(x-4),即y=k(x-4)+2,设A(x1,y1),B(x2,y2),则所以(x1+x2)(x1-x2)=2(y1+y2)(y1-y2),因为P(4,2)为AB的中点,所以k==1,所以AB的方程为y=x-2,由消去y得x2-8x+10=0,所以x1+x2=8,x1x2=10,所以|AB|=×=4,故选D.
10.双曲线-=1(a>0,b>0)的两条渐近线分别为l1,l2,F为其一个焦点,若F关于l1的对称点在l2上,则双曲线的渐近线方程为( )
A.y=±2x B.y=±x C.y=±3x D.y=±x
10.答案 B 解析 不妨取F(c,0),l1:bx-ay=0,设其对称点F′(m,n)在l2:bx+ay=0,由对称性可得,解得,点F′(m,n)在l2:bx+ay=0,
则·bc+=0,整理可得=3,∴=,双曲线的渐近线方程为:y=±x=±x.故选B.
11.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为( )
A.y2=9x B.y2=6x C.y2=3x D.y2=x
11.答案 C 解析 法一:如图,分别过点A,B作准线的垂线,分别交准线于点E,D,设=a,则由已知得=2a,由抛物线定义,得=a,故∠BCD=30°,在Rt△ACE中, ∵=|AF|=3,=3+3a,∴2=,即3+3a=6,从而得a=1,=3a=3.∴p===,因此抛物线方程为y2=3x,故选C.
法二:由法一可知∠CBD=60°,则由|AF|==3,可知p=3=,∴2p=3,∴抛物线的标准方程为y2=3x.
12.抛物线x2=4y的焦点为F,过点F作斜率为的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则△AHF的面积是( )
A.4 B.3 C.4 D.8
12.答案 C 解析 由抛物线的定义可得|AF|=|AH|,∵AF的斜率为,∴AF的倾斜角为30°,∵AH垂直于准线,∴∠FAH=60°,故△AHF为等边三角形.设A,m>0,过F作FM⊥AH于M,则在△FAM中,|AM|=|AF|,∴-1=,解得m=2,故等边三角形AHF的边长|AH|=4,∴△AHF的面积是×4×4sin 60°=4.故选C.
13.已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A,B两点(A在第一象限内),=3,过AB的中点且垂直于l的直线与x轴交于点G,则△ABG的面积为( )
A. B. C. D.
13.答案 C 解析 设A(x1,y1),B(x2,y2),因为=3,所以y1=-3y2,设直线l的方程为x
=my+1,由消去x得y2-4my-4=0,∴y1y2=-4,∴∴y1+y2=4m=,∴m=,∴x1+x2=,AB的中点坐标为,过AB中点且垂直于直线l的直线方程为y-=-,令y=0,可得x=,所以S△ABG=××=.
14.过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若|AF|=2|BF|,则|AB|等于( )
A.4 B. C.5 D.6
14.答案 B 解析 [一般解法]易知直线l的斜率存在,设为k,则其方程为y=k(x-1).由得k2x2-(2k2+4)x+k2=0,得xA·xB=1,①.因为|AF|=2|BF|,由抛物线的定义得xA+1=2(xB+1),即xA=2xB+1,②.由①②解得xA=2,xB=,所以|AB|=|AF|+|BF|=xA+xB+p=.
[应用结论]法一 由对称性不妨设点A在x轴的上方,如图设A,B在准线上的射影分别为D,C,作BE⊥AD于E,设|BF|=m,直线l的倾斜角为θ,
则|AB|=3m,由抛物线的定义知|AD|=|AF|=2m,|BC|=|BF|=m,所以cos θ==,所以tan θ=2.则sin2θ=8cos2θ,∴sin2θ=.又y2=4x,知2p=4,故利用弦长公式|AB|==.
法二 因为|AF|=2|BF|,+=+===1,解得|BF|=,|AF|=3,故|AB|=|AF|+|BF|=.
15.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
15.答案 D 解析 [一般解法] 由已知得焦点坐标为F,因此直线AB的方程为y=,即4x-4y-3=0.与抛物线方程联立,化简得4y2-12y-9=0,故|yA-yB|==6.因此S△OAB=|OF||yA-yB|=××6=.联立方程得x2-x+=0,故xA+xB=.根据抛物线的定义有|AB|=xA+xB+p=+=12,同时原点到直线AB的距离为h==,因此S△OAB=|AB|·h=.
[应用结论] 由2p=3,及|AB|=,得|AB|===12.原点到直线AB的距离d=|OF|·sin 30°=,故S△AOB=|AB|·d=×12×=.
16.在△ABC中,已知A(2,0),B(-2,0),G,M为平面上的两点且满足++=0,||=||=||,∥,则顶点C的轨迹为( )
A.焦点在x轴上的椭圆(长轴端点除外) B.焦点在y轴上的椭圆(短轴端点除外)
C.焦点在x轴上的双曲线(实轴端点除外) D.焦点在x轴上的抛物线(顶点除外)
16.答案 B 解析 设C(x,y)(y≠0),则由++=0,即G为△ABC的重心,得G.又||=||=||,即M为△ABC的外心,所以点M在y轴上,又∥,则有M.所以x2+=4+,化简得+=1,y≠0.所以顶点C的轨迹为焦点在y轴上的椭圆(除去短轴端点).
17.已知点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线的中点的轨迹方程是( )
A.y2=2x B.y2=8x2 C.y=4x2- D.y=4x2+
17.答案 C 解析 设AP的中点坐标为(x,y),则P(2x,2y+1),由点P在曲线上,得2·(2x)2-(2y+1)=0,即y=4x2-.
18.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1 C.-=1 D.+=1
18.答案 D 解析 ∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆.∴a=,∴c=1,则b2=a2-c2=,∴M的轨迹方程为+=1.
19.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的渐近线方程为( )
A.y=±x B.y=±x C.y=±x D.y=±2x
19.答案 A 解析 如图,作OA⊥F1M于点A,F2B⊥F1M于点B.
因为F1M与圆x2+y2=a2相切,∠F1MF2=45°,所以|OA|=a,|F2B|=|BM|=2a,|F2M|=2a,|F1B|=2b.又点M在双曲线上,所以|F1M|-|F2M|=2a+2b-2a=2a.整理,得b=a.所以=.所以双曲线的渐近线方程为y=±x.故选A.
20.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|=( )
A. B.1 C.2 D.3
20.答案 B 如图,圆心M到直线x=的距离d=,①.圆M的半径r=|MA|,∴|MA|2=d2+2 d2=|MA|2,②.∵=2,∴|MA|=,③.由①②③可得x0=p,或x0=,∵(2)2=2px0(p>0),∴p=2或4.∴或∴|AF|=|MA|=1.故选B.
21.已知椭圆C1与双曲线C2有相同的左右焦点F1,F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率分别为e1,e2,且=,若∠F1PF2=,则双曲线C2的渐近线方程为( )
A.x±y=0 B.x±y=0 C.x±y=0 D.x±2y=0
21.答案 x±y=0 设椭圆C1:+=1(a>b>0),双曲线C2:-=1,依题意c1=c2=c,且=,∴=,则a=3m,①,由圆锥曲线定义,得|PF1|+|PF2|=2a,且|PF1|-|PF2|=2m,∴|PF1|=4m,|PF2|=2m.在△F1PF2中,由余弦定理,得:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos=12m2,∴c2=3m2,则n2=c2-m2=2m2,因此双曲线C2的渐近线方程为y=±x,即x±y=0.
22.已知双曲线M的焦点F1,F2在x轴上,直线x+3y=0是双曲线M的一条渐近线,点P在双曲线M上,且·=0,如果抛物线y2=16x的准线经过双曲线M的一个焦点,那么||·||=( )
A.21 B.14 C.7 D.0
22.答案 B 解析 设双曲线方程为-=1(a>0,b>0),∵直线x+3y=0是双曲线M的一条渐近线,∴=,①.又抛物线的准线为x=-4,∴c=4②.又a2+b2=c2.③.∴由①②③得a=3.设点P为双曲线右支上一点,∴由双曲线定义得=6④.又·=0,∴⊥,∴在Rt△PF1F2中||2+||2=82⑤.联立④⑤,解得||·||=14.
23.若双曲线-=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,且被圆x2+(y-a)2=1截得的弦长
为,则a=( )
A. B. C. D.
23.答案 B 解析 可以设切点为(x0,x+1),由y′=2x,∴切线方程为y-(x+1)=2x0(x-x0),即y=2x0x-x+1,∵已知双曲线的渐近线为y=±x,∴x0=±1,=2,一条渐近线方程为y=2x,圆心(0,a)到直线y=2x的距离是= a=.故选B.
24.抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若
C1在点M处的切线平行于C2的一条渐近线,则p等于( )
A. B. C. D.
24.答案 D 经过第一象限的双曲线C2的渐近线方程为y=x.抛物线C1的焦点为F,双曲线C2的右焦点为F2(2,0).因为y=x2,所以y′=x.所以抛物线C1在点M处的切线斜率为,即x0=,所以x0=p.因为F,F2(2,0),M三点共线,所以=,解得p=,故选D.
25.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2外切,则动圆圆心M的轨迹方程为________.
25.答案 x2-=1(x<0) 解析 如图所示,设动圆M与圆C1及圆C2分别外切于A和B两点.连接MC1,MC2.
根据两圆外切的条件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.因为|MA|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,即|MC2|-|MC1|=|BC2|-|AC1|=3-1=2<6=|C1C2|.所以点M到两定点C1,C2的距离的差是常数.又根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离比与C1的距离大),可设轨迹方程为-=1(a>0,b>0,x<0),其中a=1,c=3,则b2=8.故动圆圆心M的轨迹方程为x2-=1(x<0).
26.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=x的对称点在椭圆C上,则椭
圆C的方程为________________.
26.答案 +=1 解析 设椭圆方程为+=1(a>b>0),由题意可知c=1,即a2-b2=1①,设点F(1,0)关于直线y=x的对称点为(m,n),可得=-2②.又因为点F与其对称点的中点坐标为,且中点在直线y=x上,所以有=×③,联立②③,解得即对称点为,代入椭圆方程可得+=1④,联立①④,解得a2=,b2=,所以椭圆方程为+=1.
27.已知直线MN过椭圆+y2=1的左焦点F,与椭圆交于M,N两点,直线PQ过原点O与MN平行,且与椭圆交于P,Q两点,则=________.
27.答案 2 解析 方法一特殊化,设MN⊥x轴,则|MN|===,|PQ|2=4,==2.
方法二 由题意知F(-1,0),当直线MN的斜率不存在时,|MN|==,|PQ|=2b=2,则=2;当直线MN的斜率存在时,设直线MN的斜率为k,则MN的方程为y=k(x+1),M(x1,y1),N(x2,y2),联立方程整理得(2k2+1)x2+4k2x+2k2-2=0,Δ=8k2+8>0.由根与系数的关系,得x1+x2=-,x1x2=,则|MN|==.直线PQ的方程为y=kx,P(x3,y3),Q(x4,y4),则解得x2=,y2=,则|OP|2=x+y=,又|PQ|=2|OP|,所以|PQ|2=4|OP|2=,所以=2.综上,=2.
28.已知抛物线x2=4y的焦点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O
为坐标原点)时,|PF|=________.
28.答案 解析 法一:令l与y轴的交点为B,在Rt△ABF中,∠AFB=30°,|BF|=2,所以|AB|=.设P(x0,y0),则x0=±,代入x2=4y中,得y0=,所以|PF|=|PA|=y0+1=.
法二:如图所示,∠AFO=30°,∴∠PAF=30°,又|PA|=|PF|,∴△APF为顶角∠APF=120°的等腰三角形,而|AF|==,∴|PF|==.
29.如图,椭圆C:+=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2,过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|·|PF2|=6,则|PM|·|PN|的值为________.
29.答案 6 解析 由已知|PM|·|PN|=(R-|OP|)(R+|OP|)=R2-|OP|2=a2+4-|OP|2,|OP|2=||2=(+)2=(||2+||2+2||||cos∠F1PF2)=(||2+||2)-(||2+||2-2||||cos∠F1PF2)=[(2a)2-2|PF1||PF2|]-×(2c)2=a2-2,所以|PM|·|PN|=(a2+4)-(a2-2)=6.
30.已知双曲线-=1(b>0)的左顶点为A,虚轴长为8,右焦点为F,且⊙F与双曲线的渐近线相切,
若过点A作⊙F的两条切线,切点分别为M,N,则|MN|=________.
30.答案 4 解析 如图所示.∵双曲线-=1(b>0)的左顶点为A,虚轴长为8,∴a2=9,2b=8,∴a=3,b=4,∴双曲线的渐近线方程为y=±x,即4x±3y=0,c2=a2+b2=25,即c=5,∴F(5,0).∵⊙F与双曲线的渐近线相切,∴⊙F的半径r==4,∴|MF|=4,∵|AF|=a+c=5+3=8,∴|AM|==4,∵S四边形AMFN=2×|AM|·|MF|=|AF|·|MN|,∴2×4×4=8·|MN|,解得|MN|=4.
31.已知双曲线-=1,过双曲线的上焦点F1作圆O:x2+y2=25的一条切线,切点为M,交双曲线的下支于点N,T为NF1的中点,则△MOT的外接圆的周长为________.
31.答案 π 解析 如图,∵F1M为圆的切线,∴OM⊥F1M,在直角三角形OMF1中,|OM|=5.设双曲线的下焦点为F2,连接NF2,∴OT为△F1F2N的中位线,∴2|OT|=|NF2|.设|OT|=x,则|NF2|=2x,又|NF1|-|NF2|=10,∴|NF1|=|NF2|+10=2x+10,∴|TF1|=x+5.由勾股定理得|F1M|2=|OF1|2-|OM|2=132-52=144,|F1M|=12,∴|MT|=|x-7|,在直角三角形OMT中,|OT|2-|MT|2=|OM|2,即x2-(x-7)2=52,∴x=.又△OMT是直角三角形,故其外接圆的直径为|OT|=,∴△MOT的外接圆的周长为π.
32.以抛物线C:y2=2px(p>0)的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|
=2,|DE|=2,则p等于________.
32.答案 解析 如图,|AB|=2,|AM|=,|DE|=2,|DN|=,|ON|=,∴xA==,∵|OD|=|OA|,∴=,∴+10=+6,解得:p=.(负值舍去)
33.已知F为抛物线C:x2=2py(p>0)的焦点,曲线C1是以F为圆心,为半径的圆,直线2x-6y+3p
=0与曲线C,C1从左至右依次相交于P,Q,R,S,则=________.
33.答案 可得直线2x-6y+3p=0与y轴交点是抛物线C:x2=2py(p>0)的焦点F,由
得x2-px-p2=0, xP=-p,xS=p yP=p,yS=p,|RS|=|SF|-=yS+-=p,|PQ|=|PF|-=yP+-=p.∴则=.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
高中数学重难点突破
专题十二 圆锥曲线的求值与求轨迹问题
知识归纳
一、椭圆秒杀小题常用结论
(1)椭圆定义:|MF1|+|MF2|=2a(2a>|F1F2|).如图(1)
图(1) 图(2) 图(3) 图(4)
(2)点P(x0,y0)和椭圆+=1(a>b>0)的关系
P(x0,y0)在椭圆内 +<1;P(x0,y0)在椭圆上 +=1;P(x0,y0)在椭圆外 +>1.
(3)如图(5),椭圆的通径(过焦点且垂直于长轴的弦)长为|AB|=,通径是最短的焦点弦.过焦点最长弦为长轴.过原点最长弦为长轴长2a,最短弦为短轴长2b.
图(5) 图(6) 图(7)
(4)焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中如图(6):
①△PF1F2的周长为2(a+c).②S=b2tan.
(5)如图(7)P为椭圆+=1(a>b>0)上的动点,F1,F2分别为椭圆的左、右焦点,当椭圆上点P在短轴端点时与两焦点连线的夹角最大.
(6)P为椭圆+=1(a>b>0)上的点,F1,F2分别为椭圆的左、右焦点,则P到焦点的最长距离为a+c,最短距离为a-c.
(7)如图(8)设P,A,B是椭圆+=1(a>b>0)上不同的三点,其中A,B关于原点对称,
则kPA·kPB=-=e2-1.
图(8) 图(9)
(8)如图(9)设A,B是椭圆+=1(a>b>0)上不同的两点,P为弦AB的中点,则kAB·kOP=-=e2-1.
二、双曲线线秒杀小题常用结论
(1)双曲线定义:||MF1|-|MF2||=2a(2a<|F1F2|).如图(10)
图(10) 图(11) 图(12)
(2)如图(11)双曲线的焦点到其渐近线的距离为b.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
(3)如图(12)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为,异支的弦中最短的为实轴,其长为2a;
(4)如图(13)P是双曲线上不同于实轴两端点的任意一点,F1、F2分别为双曲线的左、右焦点,
则S△PF1F2=b2,其中θ为∠F1PF2.
(5)如图(14)双曲线-=1(a>0,b>0)的渐近线y=±x的斜率k=±与离心率e的关系:
e==.
图(13) 图(14) 图(15) 图(16)
(6)若P是双曲线右支上一点,F1、F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a;
(7)如图(15)设P,A,B是双曲线-=1(a>b>0)上不同的三点,其中A,B关于原点对称,
则kPA·kPB==e2-1.
(8)如图(16)设A,B是双曲线-=1(a>b>0)上不同的两点,P为弦AB的中点,则kAB·kOP==e2-1.
三、抛物线秒杀小题常用结论
(1)抛物线定义:|MF|=d(d为M点到准线的距离).如图(17)
(2)设A,B是抛物线y2=2px(p>0)上不同的两点,P为弦AB的中点,则kAB·y0=p.
(3)以抛物线y2=2px(p>0)为例,设AB是抛物线的过焦点的一条弦(焦点弦),F是抛物线的焦点,A(x1,y1),B(x2,y2),A、B在准线上的射影为A1、B1,则有以下结论:
①x1x2=,y1y2=-p2;
②若直线AB的倾斜角为θ,则|AF|=,|BF|=;如图(18)
③+=为定值;如图(18)
④|AB|=x1+x2+p=(其中θ为直线AB的倾斜角),抛物线的通径长为2p,通径是最短的焦点弦;如图(18)
⑤S△AOB=(其中θ 为直线AB的倾斜角);如图(18)
⑥以AB为直径的圆与抛物线的准线相切;如图(19)
图(17) 图(18) 图(19) 图(20)
⑦以AF(或BF)为直径的圆与y轴相切;如图(20,21)
图(21) 图(22) 图(23)
⑧以A1B1为直径的圆与直线AB相切,切点为F,∠A1FB1=90°;如图(22)
⑨A,O,B1三点共线,B,O,A1三点也共线;
⑩已知M(x0,y0)是抛物线y2=2px(p>0)上任意一点,点N(a,0)是抛物线的对称轴上一点,
则|MN|min=
(4)如图(23)所示,AB是抛物线x2=2py(p>0)的过焦点的一条弦(焦点弦),分别过A,B作抛物线的切线,交于点P,连接PF,则有以下结论:
①点P的轨迹是一条直线,即抛物线的准线l:y=-;②两切线互相垂直,即PA⊥PB;
③PF⊥AB;④点P的坐标为.
四、圆锥曲线的焦比定理
过圆锥曲线焦点F的弦AB,且AB的倾斜角为,若,即.
典例分析
一、椭圆模型
【例1-1】如图,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的方程为( )
+=1 B.+=1
C.+=1 D.+=1
【例1-2】已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
A.+y2=1 B.+=1 C.+=1 D.+=1
【例1-3】设F1,F2分别是椭圆E:(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为__________.
【例1-4】已知点P(x,y)在椭圆+=1上,F1,F2是椭圆的两个焦点,若△PF1F2的面积为18,则∠F1PF2的余弦值为________.
【例1-5】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,则直线OM与直线l的斜率之积为( )
A.-9 B.- C.- D.-3
【例1-6】已知椭圆C:+=1(a>b>0)及点B(0,a),过点B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则∠ABF=( )
A.60° B.90° C.120° D.150°
【例1-7】已知P为椭圆C:+=1上的一个动点,F1,F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处的切线距离为d,若|PF1|·|PF2|=,则d=________.
【例1-8】如图所示,A1,A2是椭圆C:+=1的短轴端点,点M在椭圆上运动,且点M不与A1,A2重合,点N满足NA1⊥MA1,NA2⊥MA2,则=( )
A. B. C. D.
【例1-9】在平面直角坐标系xOy中,直线x+y-2=0与椭圆C:+=1(a>b>0)相切,且椭圆C的右焦点F(c,0)关于直线l:y=x的对称点E在椭圆C上,则△OEF的面积为( )
A. B. C.1 D.2
二、双曲线模型
【例2-1】已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )
A.-=1 B.-=1 C.-y2=1 D.x2-=1
【例2-2】已知双曲线-=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
【例2-3】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=( )
A.3 B.4 C.5 D.6
【例2-4】过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有( )
A.1条 B.2条 C.3条 D.4条
【例2-5】已知双曲线C:-=1(a,b>0)的右顶点A和右焦点F到一条渐近线的距离之比为1∶,则C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±x
【例2-6】已知双曲线Γ:-=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记∠BAC=θ,若Γ的离心率为,则( )
A.θ∈ B.θ= C.θ∈ D.θ=
【例2-7】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO交双曲线C左支于点M,直线PF2交双曲线C右支于点N,若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±2x
【例2-8】如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上、下端点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是________.
抛物线模型
【例3-1】已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过点F的直线与抛物线C交于A,B两点,若·=-12,则抛物线C的方程为( )
A.x2=8y B.x2=4y C.y2=8x D.y2=4x
【例3-2】设抛物线C:y2=2px(p>0)的焦点为F,点M在抛物线C上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x
【例3-3】设抛物线C:y2=3x的焦点为F,点A为C上一点,若|FA|=3,则直线FA的倾斜角为( )
A. B. C.或 D.或
【例3-4】在直角坐标系xOy中,抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若∠NFR=60°,则|FR|等于( )
A.2 B. C.2 D.3
【例3-5】过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B两点,若|AF|=2|BF|=6,则p=________.
【例3-6】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为( )
A.5 B.6 C. D.
【例3-7】(2018·全国Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
【例3-8】过点P(2,-1)作抛物线x2=4y的两条切线,切点分别为A,B,PA,PB分别交x轴于E,F两点,O为坐标原点,则△PEF与△OAB的面积之比为( )
A. B. C. D.
【例3-9】已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k的值为( )
A. B. C. D.
【例3-10】已知抛物线C:y2=8x的焦点为F ,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点P(10,0),则△AOB的面积为( )
A.4 B.4 C.8 D.8
【例3-11】已知点P(-1,0),设不垂直于x轴的直线l与抛物线y2=2x交于不同的两点A,B,若x轴是∠APB的角平分线,则直线l一定过点( )
A. B.(1,0) C.(2,0) D.(-2,0)
【例3-12】在直线y=-2上任取一点Q,过Q作抛物线x2=4y的切线,切点分别为A,B,则直线AB恒过的点的坐标为( )
A.(0,1) B.(0,2) C.(2,0) D.(1,0)
【例3-13】如图,过抛物线y2=4x的焦点F作倾斜角为α的直线l,l与抛物线及其准线从上到下依次交于A、B、C点,令=λ1,=λ2,则当α=时,λ1+λ2的值为( )
A.4 B.5 C.6 D.8
【例3-14】如图所示,抛物线y=x2,AB为过焦点F的弦,过A,B分别作抛物线的切线,两切线交于点M,设A(xA,yA),B(xB,yB),M(xM,yM),则:①若AB的斜率为1,则|AB|=4;②|AB|min=2;③yM=-1;④若AB的斜率为1,则xM=1;⑤xA·xB=-4.以上结论正确的个数是( )
A.1 B.2 C.3 D.4
四、含两种曲线模型
【例4-1】(2019·浙江)已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.
【例4-2】如图,已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,过点F1的直线与圆x2+y2=1相切于点T,与双曲线的左、右两支分别交于A,B,若|F2B|=|AB|,则b的值是________.
【例4-3】已知双曲线C:-=1(a>0,b>0)的焦距为2c,直线l过点且与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为半径的圆与直线l交于M,N两点,若|MN|=c,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x C.y=±2x D.y=±4x
【例4-4】已知F为抛物线y2=4x的焦点,过点F的直线交抛物线于A,B两点(点A在第一象限),若=3,则以AB为直径的圆的标准方程为( )
A.2+(y-2)2= B.(x-2)2+(y-2)2=
C.(x-5)2+(y-2)2=64 D.(x-2)2+(y-2)2=64
【例4-5】已知曲线C1是以原点O为中心,F1,F2为焦点的椭圆,曲线C2是以O为顶点、F2为焦点的抛物线,A是曲线C1与C2的交点,且∠AF2F1为钝角,若|AF1|=,|AF2|=,则△AF1F2的面积是( )
A. B.2 C. D.4
【例4-6】在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
五、动点的轨迹方程
求动点轨迹方程的六大方法
1.待定系数法;2.直译法;3.定义法;4.代入法;5.参数法;6.交轨法.
【例5-1】设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是( )
A.y2=2x B.(x-1)2+y2=4 C.y2=-2x D.(x-1)2+y2=2
【例5-2】设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,=+,则点M的轨迹方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
【例5-3】已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( )
A.-=1 B.+=1 C.-=1 D.+=1
【例5-4】在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为________.
同步练习
1.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,左、右顶点为M,N,过F2的直线l交C于A,B两点(异于M,N),△AF1B的周长为4,且直线AM与AN的斜率之积为-,则C的方程为( )
A.+=1 B.+=1 C.+=1 D.+y2=1
2.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则椭圆E的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
3.已知F1,F2为椭圆C:+=1(a>b>0)的左、右焦点,过原点O且倾斜角为30°的直线l与椭圆C的一个交点为A,若AF1⊥AF2,S△F1AF2=2,则椭圆C的方程为( )
A.+=1 B.+=1 C.+=1 D.+=1
4.设P为椭圆C:+=1上一点,F1,F2分别是椭圆C的左、右焦点,且△PF1F2的重心为G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为( )
A.24 B.12 C.8 D.6
5.已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于( )
A. B.3 C.2 D.4
6.已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为( )
A.-=1 B.-=1 C.-=1 D.-=1
7.双曲线-=1(a,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的角平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为( )
A.-y2=1 B.x2-=1 C.x2-=1 D.-y2=1
8.已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P是双曲线上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为,则双曲线的渐近线方程为( )
A.y=±2x B.y=±x C.y=±x D.y=±x
9.过点P(4,2)作一直线AB与双曲线C:-y2=1相交于A,B两点,若P为AB的中点,则|AB|=( )
A.2 B.2 C.3 D.4
10.双曲线-=1(a>0,b>0)的两条渐近线分别为l1,l2,F为其一个焦点,若F关于l1的对称点在l2上,则双曲线的渐近线方程为( )
A.y=±2x B.y=±x C.y=±3x D.y=±x
11.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为( )
A.y2=9x B.y2=6x C.y2=3x D.y2=x
12.抛物线x2=4y的焦点为F,过点F作斜率为的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则△AHF的面积是( )
A.4 B.3 C.4 D.8
13.已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A,B两点(A在第一象限内),=3,过AB的中点且垂直于l的直线与x轴交于点G,则△ABG的面积为( )
A. B. C. D.
14.过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若|AF|=2|BF|,则|AB|等于( )
A.4 B. C.5 D.6
15.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
16.在△ABC中,已知A(2,0),B(-2,0),G,M为平面上的两点且满足++=0,||=||=||,∥,则顶点C的轨迹为( )
A.焦点在x轴上的椭圆(长轴端点除外) B.焦点在y轴上的椭圆(短轴端点除外)
C.焦点在x轴上的双曲线(实轴端点除外) D.焦点在x轴上的抛物线(顶点除外)
17.已知点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线的中点的轨迹方程是( )
A.y2=2x B.y2=8x2 C.y=4x2- D.y=4x2+
18.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1 C.-=1 D.+=1
19.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的渐近线方程为( )
A.y=±x B.y=±x C.y=±x D.y=±2x
20.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|=( )
A. B.1 C.2 D.3
21.已知椭圆C1与双曲线C2有相同的左右焦点F1,F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率分别为e1,e2,且=,若∠F1PF2=,则双曲线C2的渐近线方程为( )
A.x±y=0 B.x±y=0 C.x±y=0 D.x±2y=0
22.已知双曲线M的焦点F1,F2在x轴上,直线x+3y=0是双曲线M的一条渐近线,点P在双曲线M上,且·=0,如果抛物线y2=16x的准线经过双曲线M的一个焦点,那么||·||=( )
A.21 B.14 C.7 D.0
23.若双曲线-=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,且被圆x2+(y-a)2=1截得的弦长为,则a=( )
A. B. C. D.
24.抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若
C1在点M处的切线平行于C2的一条渐近线,则p等于( )
A. B. C. D.
25.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2外切,则动圆圆心M的轨迹方程为________.
26.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为________________.
27.已知直线MN过椭圆+y2=1的左焦点F,与椭圆交于M,N两点,直线PQ过原点O与MN平行,且与椭圆交于P,Q两点,则=________.
28.已知抛物线x2=4y的焦点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O为坐标原点)时,|PF|=________.
29.如图,椭圆C:+=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2,过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|·|PF2|=6,则|PM|·|PN|的值为________.
30.已知双曲线-=1(b>0)的左顶点为A,虚轴长为8,右焦点为F,且⊙F与双曲线的渐近线相切,若过点A作⊙F的两条切线,切点分别为M,N,则|MN|=________.
31.已知双曲线-=1,过双曲线的上焦点F1作圆O:x2+y2=25的一条切线,切点为M,交双曲线的下支于点N,T为NF1的中点,则△MOT的外接圆的周长为________.
32.以抛物线C:y2=2px(p>0)的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=2,|DE|=2,则p等于________.
33.已知F为抛物线C:x2=2py(p>0)的焦点,曲线C1是以F为圆心,为半径的圆,直线2x-6y+3p=0与曲线C,C1从左至右依次相交于P,Q,R,S,则=________.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)