专题十三 圆锥曲线中的最值与范围问题 学案

文档属性

名称 专题十三 圆锥曲线中的最值与范围问题 学案
格式 zip
文件大小 658.7KB
资源类型 试卷
版本资源 人教A版(2019)
科目 数学
更新时间 2023-09-14 13:38:28

文档简介

中小学教育资源及组卷应用平台
高中数学重难点突破
专题十三 圆锥曲线中的最值与范围问题
典例分析
几何法解决的最值模型
【例1-1】过椭圆+=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PFQ的周长的最小值为(  )
A.12        B.14        C.16        D.18
【例1-1】答案 D 解析 由椭圆的对称性可知,P,Q两点关于原点对称,设F′为椭圆另一焦点,则四边形PFQF′为平行四边形,由椭圆定义可知:|PF|+|PF′|+|QF|+|QF′|=4a=20,又|PF|=|QF′|,|QF|=|PF′|,∴|PF|+|QF|=10,又PQ为椭圆内的弦,∴|PQ|min=2b=8,∴△PFQ周长的最小值为:10+8=18.
【例1-2】已知点F为椭圆C:+y2=1的左焦点,点P为椭圆C上任意一点,点Q的坐标为(4,3),则|PQ|+|PF|取最大值时,点P的坐标为________.
【例1-2】答案 (0,-1) 解析 设椭圆的右焦点为E,|PQ|+|PF|=|PQ|+2a-|PE|=|PQ|-|PE|+2.当P为线段QE的延长线与椭圆的交点时,|PQ|+|PF|取最大值,此时,直线PQ的方程为y=x-1,QE的延长线与椭圆交于点(0,-1),即点P的坐标为(0,-1).
【例1-3】椭圆+=1的左焦点为F,直线x=m与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是(  )
A.         B.         C.         D.
【例1-3】答案 C 解析 如图所示,设椭圆的右焦点为F′,连接MF′,NF′.因为|MF|+|NF|+|MF′|+|NF′|≥|MF|+|NF|+|MN|,所以当直线x=m过椭圆的右焦点时,△FMN的周长最大.此时|MN|==,又c===1,所以此时△FMN的面积S=×2×=.故选C.
【例1-4】设P为双曲线x2-=1右支上一点,M,N分别是圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4          B.5          C.6          D.7
【例1-4】答案 C 解析 由题意得,圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;圆C2:(x-4)2+y2=1的圆心为(4,0),半径为r2=1.设双曲线x2-=1的左、右焦点分别为F1(-4,0),F2(4,0).如图所示,连接PF1,PF2,F1M,F2N,则|PF1|-|PF2|=2.又|PM|max=|PF1|+r1,|PN|min=|PF2|-r2,所以|PM|
-|PN|的最大值m=|PF1|-|PF2|+r1+r2=5.又|PM|min=|PF1|-r1,|PN|max=|PF2|+r2,所以|PM|-|PN|的最小值n=|PF1|-|PF2|-r1-r2=-1,所以|m-n|=6.故选C.
【例1-5】已知点M(-3,2)是坐标平面内一定点,若抛物线y2=2x的焦点为F,点Q是该抛物线上的一动点,则|MQ|-|QF|的最小值是(  )
A.        B.3        C.        D.2
【例1-5】答案 C 解析 抛物线的准线方程为x=-,过Q作准线的垂线,垂足为Q′,如图.依据抛物线的定义,得|QM|-|QF|=|QM|-|QQ′|,则当QM和QQ′共线时,|QM|-|QQ′|的值最小,最小值为=.
【例1-6】已知抛物线的方程为x2=8y,F是其焦点,点A(-2,4),在此抛物线上求一点P,使△APF的周长最小,此时点P的坐标为________.
【例1-6】答案  解析 因为(-2)2<8×4,所以点A(-2,4)在抛物线x2=8y的内部,如图,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B,连接AQ,由抛物线的定义可知△APF的周长为|PF|+|PA|+|AF|=|PQ|+|PA|+|AF|≥|AQ|+|AF|≥|AB|+|AF|,当且仅当P,B,A三点共线时,△APF的周长取得最小值,即|AB|+|AF|.因为A(-2,4),所以不妨设△APF的周长最小时,点P的坐标为(-2,y0),代入x2=8y,得y0=,故使△APF的周长最小的抛物线上的点P的坐标为.
【例1-7】已知抛物线C:x2=8y的焦点为F,动点Q在C上,圆Q的半径为1,过点F的直线与圆Q切于点P,则·的最小值为________.
【例1-7】答案 3 解析 如图,在Rt△QPF中,·=||||cos∠PFQ=||||=||2=||2-1.由抛物线的定义知:||=d(d为点Q到准线的距离),易知,抛物线的顶点到准线的距离最短,∴||min=2,∴·的最小值为3.
二、代数法解决的最值模型
【例2-1】如图,焦点在x轴上的椭圆+=1的离心率e=,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则·的最大值为________.
【例2-1】答案 4 解析 设P点坐标为(x0,y0).由题意知a=2,因为e==,所以c=1,b2=a2-c2=3.故椭圆方程为+=1.所以-2≤x0≤2,-≤y0≤.因为F(-1,0),A(2,0),=(-1-x0,-y0),=(2-x0,-y0),所以·=x-x0-2+y=x-x0+1=(x0-2)2.即当x0=-2时,·取得最大值4.
【例2-2】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式t<e1+e2恒成立,则t的最大值为(  )
A.        B.        C.2        D.
【例2-2】答案 B 解析 由平面几何知识可得|BD|=|AC|=,所以e1=,e2=,所以e1e2=1.因为e1+e2=e1+=+在x∈(0,1)上单调递减,所以e1+e2>+=.因为对任意x∈(0,1),不等式t<e1+e2恒成立,所以t≤,即t的最大值为.
【例2-3】已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF1|=2|PF2|,则△PF1F2面积的最大值是(  )
A.1        B.        C.        D.2
【例2-3】答案 B 解析 ∵∴|PF1|=4a,|PF2|=2a,设∠F1PF2=θ,∴cosθ==,∴S2△PF1F2=(×4a×2a×sinθ)2=16a4(1-)=-9(a2-)2≤,当且仅当a2=时,等号成立,故S△PF1F2的最大值是.故选B.
【例2-4】已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若△PQF2的周长为16,则的最大值为________.
【例2-4】答案  解析 由题意,得△ABF2的周长为32,∴|AF2|+|BF2|+|AB|=32,∵|AF2|+|BF2|-|AB|=4a,|AB|=,∴=32-4a,∴b=(0【例2-5】设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为(  )
A.        B.        C.        D.1
【例2-5】答案 C 解析 如图所示,设P(x0,y0)(y0>0),则y=2px0,即x0=.设M(x′,y′),
由=2,得化简可得
∴直线OM的斜率为k===≤=(当且仅当y0=p时取等号),故直线OM的斜率的最大值为.
【例2-6】抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|AB|,则∠AFB的最大值为(  )
A.        B.        C.        D.
【例2-6】答案 D 解析 由抛物线的定义可得|AF|=x1+2,|BF|=x2+2,又x1+x2+4=|AB|,得|AF|+|BF|=,|AB|,所以|AB|=(|AF|+|BF|).所以cos∠AFB====-≥×2-=-,而0<∠AFB<π,所以∠AFB的最大值为.
【例2-7】已知F为抛物线y2=x的焦点,点A,B在该抛物线上,且位于x轴的两侧,·=2(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是________.
【例2-7】答案  解析 法一:设直线lAB:x=my+t,A(x1,y1),B(x2,y2),联立 y2-my-t=0,∴y1+y2=m,y1y2=-t,∵点A,B位于x轴两侧,∴y1y2=-t<0,∴t>0.又·=x1x2+y1y2=(y1y2)2+y1y2=t2-t=2,解得t=2或t=-1(舍去).∴S△AFO+S△BFO=|OF|·|y1-y2|=|y1-y2|=≥,∴△AFO与△BFO面积之和的最小值为.
法二:设A(x1,y1),B(x2,y2).∵·=x1x2+y1y2=(y1y2)2+y1y2=2,∴y1y2=-2或y1y2=1(舍去).∴S△AFO+S△BFO=|y1-y2|== ≥=.
三、范围问题模型
1.用函数思想解决的模型
【例3-1】在椭圆+=1上任意一点P,Q与P关于x轴对称,若有·≤1,则与的夹角余弦值的范围为________.
【例3-1】答案  解析 设P(x,y),则Q点(x,-y),椭圆+=1的焦点坐标为(-,0),(,0),∵·≤1,∴x2-2+y2≤1,结合+=1,可得y2∈[1,2].故与的夹角θ满足:cos θ====-3+∈.
【例3-2】已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,点P在双曲线的右支上,如果|PF1|=t|PF2|(t∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.
【例3-2】答案 (0,] 解析 由双曲线的定义及题意可得解得又|PF1|+|PF2|≥2c,∴|PF1|+|PF2|=+≥2c,整理得e=≤=1+,∵1【例3-3】已知过抛物线C:y2=8x的焦点F的直线l交抛物线于P,Q两点,若R为线段PQ的中点,连接OR并延长交抛物线C于点S,则的取值范围是(  )
A.(0,2)     B.[2,+∞)     C.(0,2]     D.(2,+∞)
【例3-3】答案 D 解析 由题意知,抛物线y2=8x的焦点F的坐标为(2,0),直线l的斜率存在且不为0,设直线l的方程为y=k(x-2).由消去y整理得k2x2-4(k2+2)x+4k2=0,设P(x1,y1),Q(x2,y2),R(x0,y0),S(x3,y3),则x1+x2=,故x0==,y0=k(x0-2)=,所以kOS==,直线OS的方程为y=x,代入抛物线方程,解得x3=,由条件知k2>0.所以==k2+2>2.选D.
2.用建立不等关系解决的的模型
【例4-1】已知直线l:y=kx+t与圆C1:x2+(y+1)2=2相交于A,B两点,且△C1AB的面积取得最大值,又直线l与抛物线C2:x2=2y相交于不同的两点M,N,则实数t的取值范围是______________.
【例4-1】答案 (-∞,-4)∪(0,+∞) 解析 根据题意得到△C1AB的面积为r2sin θ,当角度为直角时面积最大,此时△C1AB为等腰直角三角形,则圆心到直线的距离为d=1,根据点到直线的距离公式得到=1 1+k2=(1+t)2 k2=t2+2t,直线l与抛物线C2:x2=2y相交于不同的两点M,N,联立直线和抛物线方程得到x2-2kx-2t=0 ,只需要此方程有两个不等根即可,Δ=4k2+8t=4t2+16t>0 ,解得t的取值范围为(-∞,-4)∪(0,+∞).
【例4-2】过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥,点A在x轴上方,则|FA|的取值范围是(  )
A.     B.     C.     D.
【例4-2】答案 D 解析 记点A的横坐标是x1,则有|AF|=x1+=+=+|AF|cos θ,
|AF|(1-cos θ)=,|AF|=.由≤θ<π得-1【例4-3】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),P是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则·的最小值的取值范围是________.
【例4-3】答案  解析 设P(m,n),则-=1,即m2=a2.又F1(-1,0),F2(1,0),则=(-1-m,-n),=(1-m,-n),·=n2+m2-1=n2+a2-1=n2+a2-1≥a2-1,当且仅当n=0时取等号,所以·的最小值为a2-1.由2≤≤4,得≤a≤,故-≤a2-1≤-,即·的最小值的取值范围是.
【例4-4】如图,由抛物线y2=12x与圆E:(x-3)2+y2=16的实线部分构成图形Ω,过点P(3,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则|AB|的取值范围为(  )
A.[4,5]       B.[7,8]       C.[6,7]       D.[5,6]
【例4-4】答案 B 解析 由题意可知抛物线y2=12x的焦点为F(3,0),圆(x-3)2+y2=16的圆心为E(3,0),因此点P,F,E三点重合,所以|PA|=4,设B(x0,y0),则由抛物线的定义可知|PB|=x0+3,由得(x-3)2+12x=16,整理得x2+6x-7=0,解得x1=1,x2=-7(舍去),设圆E与抛物线交于C,D两点,所以xC=xD=1,因此0≤x0≤1,又|AB|=|AP|+|BP|=4+x0+3=x0+7,所以|AB|=x0+7∈[7,8],故选B.
【例4-5】已知点P是椭圆+=1上的动点,且与椭圆的四个顶点不重合,F1、F2分别是椭圆的左、右焦点,O为坐标原点,若点M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是________.
【例4-5】答案 (0,4) 解析 解法一:由椭圆的对称性,只需研究动点P在第一象限内的情况,当点P趋近于椭圆的上顶点时,点M趋近于点O,此时|OM|趋近于0;当点P趋近于椭圆的右顶点时,点M趋近于点F1,此时|OM|趋近于=4,所以|OM|的取值范围为(0,4).
解法二:如图,延长PF2,F1M,交于点N,∵PM是∠F1PF2的角平分线,且F1M⊥MP,
∴|PN|=|PF1|,M为F1N的中点,又O为F1F2的中点,∴|OM|=|F2N|=||PN|-|PF2||=(|PF1|-|PF2|),又|PF1|+|PF2|=10,∴|OM|=.|2|PF1|-10|=|PF1-5|,又|PF1|∈(1,5)∪(5,9),∴|OM|∈(0,4),故|OM|的取值范围是(0,4).
同步练习
1.已知圆M:(x-2)2+y2=1经过椭圆C:+=1(m>3)的一个焦点,圆M与椭圆C的公共点为A,B,点P为圆M上一动点,则P到直线AB的距离的最大值为(  )
A.2-5     B.2-4     C.4-11     D.4-10
1.答案 A 解析 易知圆M与x轴的交点为(1,0),(3,0),∴m-3=1或m-3=9,则m=4或m=12.当m=12时,圆M与椭圆C无交点,舍去.所以m=4.联立得x2-16x+24=0.又x≤2,所以x=8-2.故点P到直线AB距离的最大值为3-(8-2)=2-5.
2.设P是椭圆+=1上一点,M,N分别是两圆:(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|
+|PN|的最小值和最大值分别为(  )
A.9,12      B.8,11      C.8,12      D.10,12
2.答案 C 解析 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA|
+|PB|=2a=10,连接PA,PB分别与圆相交于M,N两点,此时|PM|+|PN|最小,最小值为|PA|+|PB|-2R=8;连接PA,PB并延长,分别与圆相交于M,N两点,此时|PM|+|PN|最大,最大值为|PA|+|PB|+2R=12,即最小值和最大值分别为8,12.
3.P是双曲线C:-y2=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为(  )
A.1      B.2+      C.4+      D.2+1
3.答案 D 解析 如图所示,设双曲线右焦点为F2,则|PF1|+|PQ|=2a+|PF2|+|PQ|,即当|PQ|+|PF2|最小时,|PF1|+|PQ|取最小值,由图知当F2,P,Q三点共线时|PQ|+|PF2|取得最小值,即F2到直线l的距离d=1,故所求最值为2a+1=2+1.故选D.
4.过双曲线x2-=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为(  )
A.10        B.13        C.16        D.19
4.答案 B 解析 由题意可知,|PM|2-|PN|2=(|PC1|2-4)-(|PC2|2-1),因此|PM|2-|PN|2=|PC1|2-|PC2|2-3=(|PC1|-|PC2|)(|PC1|+|PC2|)-3=2(|PC1|+|PC2|)-3≥2|C1C2|-3=13.故选B.
5.已知点F是抛物线y2=4x的焦点,P是该抛物线上任意一点,M(5,3),则|PF|+|PM|的最小值是(  )
A.6        B.5        C.4        D.3
5.答案 A 解析 由题意知,抛物线的准线l的方程为x=-1,过点P作PE⊥l于点E,由抛物线的定义,得|PE|=|PF|,易知当P,E,M三点在同一条直线上时,|PF|+|PM|取得最小值,即(|PF|+|PM|)min=5-(-1)=6,故选A.
6.已知抛物线y2=8x,点Q是圆C:x2+y2+2x-8y+13=0上任意一点,记抛物线上任意一点P到直线x=-2的距离为d,则|PQ|+d的最小值为(  )
A.5        B.4        C.3        D.2
6.答案 C 解析 如图,由题意知抛物线y2=8x的焦点为F(2,0),连接PF,FQ,则d=|PF|,将圆C的方程化为(x+1)2+(y-4)2=4,圆心为C(-1,4),半径为2,则|PQ|+d=|PQ|+|PF|,又|PQ|+|PF|≥|FQ|(当且仅当F,P,Q三点共线时取得等号).所以当F,Q,C三点共线时取得最小值,且为|CF|-|CQ|=-2=3,故选C.
7.如图,已知抛物线C1的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆C2:x2+y2-4x+3=0,过圆心C2的直线l与抛物线和圆C2分别交于点P,Q和M,N,则|PN|+4|QM|的最小值为(  )
A.23        B.42        C.12        D.52
7.答案 A 解析 由题意可设抛物线C1的方程为y2=2px(p>0),因为抛物线C1过点(2,4),所以16=2p×2,解得p=4,所以抛物线C1的方程为y2=8x.圆C2:x2+y2-4x+3=0整理得(x-2)2+y2=1,可知圆心C2(2,0)恰好是抛物线y2=8x的焦点,设P(x1,y1),Q(x2,y2).①当直线l的斜率不存在时,l:x=2,所以P(2,4),Q(2,-4),于是|PN|+4|QM|=|PC2|+|C2N|+4|QC2|+4|C2M|=|PC2|+4|QC2|+5=4+4×4+5=25.②当直线l的斜率存在时,易知斜率不为0,可设l的方程为y=k(x-2)(k≠0),由得k2x2-(4k2+8)x+4k2=0,则Δ>0,且x1x2=4,即x2=.所以|PN|+4|QM|=|PC2|+4|QC2|+5=x1+2+4(x2+2)+5=x1+4x2+15=x1++15≥2+15=8+15=23,当且仅当x1=,即x1=4时等号成立.因为23<25,所以|PN|+4|QM|的最小值为23.故选A.
8.抛物线y2=8x的焦点为F,设A,B是抛物线上的两个动点,|AF|+|BF|=|AB|,则∠AFB的最大值为(  )
A.        B.        C.        D.
8.答案 D 解析 设|AF|=m,|BF|=n,∵|AF|+|BF|=|AB|,∴|AB|≥2,∴mn≤|AB|2,在△AFB中,由余弦定理得cos∠AFB===≥-,∴∠AFB的最大值为.
9.(2017·全国Ⅰ)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)          B.(0,]∪[9,+∞)
C.(0,1]∪[4,+∞)          D.(0,]∪[4,+∞)
9.答案 A 解析 当0<m<3时,焦点在x轴上,要使C上存在点M满足∠AMB=120°,则≥tan 60°
=,即≥,解得0<m≤1.当m>3时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则≥tan 60°=,即≥,解得m≥9.故m的取值范围为(0,1]∪[9,+∞).
10.如图,抛物线E:x2=4y与M:x2+(y-1)2=16交于A,B两点,点P为劣弧上不同于A,B的一个动点,平行于y轴的直线PN交抛物线E于点N,则△PMN的周长的取值范围是(  )
A.(6,12)      B.(8,10)      C.(6,10)      D.(8,12)
10.答案 B 解析 由题意可得,抛物线E的焦点为(0,1),圆M的圆心为(0,1),半径为4,所以圆心M(0,1)为抛物线的焦点,故|NM|等于点N到准线y=-1的距离,又PN∥y轴,故|PN|+|NM|等于点P到准线y=-1的距离,由,得y=3,又点P为劣弧上不同于A,B的一个动点,所以点P到准线y=-1的距离的取值范围是(4,6),又|PM|=4,所以△PMN的周长的取值范围是(8,10),选B.
11.已知椭圆+=1(a>b>0)的离心率e的取值范围为,直线y=-x+1交椭圆于点M,N,
O是坐标原点,且OM⊥ON,则椭圆长轴长的取值范围是(  )
A.[, ]     B.[, ]     C.[, ]     D.[, ]
11.答案 C 解析 联立消去y,得(a2+b2)x2-2a2x+a2(1-b2)=0,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,由OM⊥ON,得x1x2+y1y2=0,∴x1x2+(1-x1)(1-x2)=0,化简得2x1x2-(x1+x2)+1=0,∴-+1=0,化简得b2=,∵e==,∴e2=1-,∵e∈,∴e2∈,∴1-∈,∴≤≤,∴≤≤,∴≤a2≤,∴≤a≤,∴≤2a≤,即椭圆的长轴长的取值范围为[, ],故选C
12.已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大
值为________,最小值为________.
12.答案 6+ 6- 解析 如图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.所以|PA|+|PF|=|PA|-|PF1|+6.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P,A,F1共线时等号成立).
13.已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.
13.答案 -1 解析 如图,过A作AH⊥l,AN垂直于抛物线的准线,则|AH|+|AN|=m+n+1,连接AF,则|AF|+|AH|=m+n+1,由平面几何知识,知当A,F,H三点共线时,|AF|+|AH|=m+n+1取得最小值,最小值为F到直线l的距离,即=,即m+n的最小值为-1.
14.已知点F是抛物线C:y2=4x的焦点,点M为抛物线C上任意一点,过点M向圆(x-1)2+y2=作切线,切点分别为A,B,则四边形AFBM面积的最小值为________.
14.答案  解析 如图所示:
圆的圆心与抛物线的焦点重合,若四边形AFBM的面积最小,则MF最小,即M距离准线最近,故
满足条件时,M与原点重合,此时MF=1,BF=BM=,此时四边形AFBM面积S=2S△BMF=2×××=,故答案为.
15.已知点A在椭圆+=1上,点P满足=(λ-1) (λ∈R)(O是坐标原点),且·=72,则线段OP在x轴上的投影长度的最大值为________.
15.答案 15 解析 因为=(λ-1),所以=λ,即O,A,P三点共线,因为·=72,所以·=λ||2=72,设A(x,y),OA与x轴正方向的夹角为θ,线段OP在x轴上的投影长度为|||cos θ|=|λ||x|=eq \f(72|x|,||2)==≤=15,当且仅当|x|=时取等号,故所求最大值为15.
16.椭圆+=1的左、右焦点分别为F1,F2,过椭圆的右焦点F2作一条直线l交椭圆于P,Q两点,
则△F1PQ的内切圆面积的最大值是________.
16.答案  解析 由题意得,直线l的斜率不为0,所以令直线l:x=my+1,与椭圆方程联立消去x得(3m2+4)y2+6my-9=0,可设P(x1,y1) ,Q(x2,y2) ,则y1+y2=-,y1y2=-.可知=|F1F2||y1-y2|==12,又=≤,故≤3.三角形周长与三角形内切圆的半径的积等于三角形面积的二倍,则内切圆半径r=eq \f(2,8)≤,其面积最大值为.
17.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作x轴,y轴垂线,垂足分别为C,D,则|AC|+|BD|的最小值为________.
17.答案 3 解析 不妨设A(x1,y1)(y1>0),B(x2,y2)(y2<0).则|AC|+|BD|=x2+y1=eq \f(y,4)+y1.又y1y2=-p2=-4.∴|AC|+|BD|=eq \f(y,4)-(y2<0).设g(x)=-,在(-∞,-2)递减,在(-2,0)递增.∴当x=-2,即y2=-2时,|AC|+|BD|的最小值为3.
18.已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.
18.答案 8 解析 法一 由题意知,直线l1,l2的斜率都存在且不为0,F,设l1:x=ty+,则直线l1的斜率为,联立方程得消去x得y2-2ty-1=0.设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-1.所以|AB|=|y1-y2|===2t2+2,同理得,用替换t可得|DE|=+2,所以|AB|+|DE|=2+4≥4+4=8,当且仅当t2=,即t=±1时等号成立,故|AB|+|DE|的最小值为8.
法二 由题意知,直线l1,l2的斜率都存在且不为0,F,不妨设l1的斜率为k,则l1:y=k,l2:y=-.由消去y得k2x2-(k2+2)x+=0,设A(x1,y1),B(x2,y2),则x1+x2=1+.由抛物线的定义知,|AB|=x1+x2+1=1++1=2+.同理可得,用-替换|AB|中k,可得|DE|=2+2k2,所以|AB|+|DE|=2++2+2k2=4++2k2≥4+4=8,当且仅当=2k2,即k=±1
时等号成立,故|AB|+|DE|的最小值为8.
19.已知斜率为的直线l与抛物线y2=2px(p>0)交于位于x轴上方的不同两点A,B,记直线OA,OB的斜率分别为k1,k2,则k1+k2的取值范围是 .
19.答案 (2,+∞) 解析 设直线l:x=2y+t,联立抛物线方程消去x得y2=2p(2y+t) y2-4py-2pt
=0,设A(x1,y1),B(x2,y2),Δ=16p2+8pt>0 t>-2p,y1+y2=4p,y1y2=-2pt>0 t<0,即-2p2,即k1+k2的取值范围是(2,+∞) 
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
高中数学重难点突破
专题十三 圆锥曲线中的最值与范围问题
典例分析
几何法解决的最值模型
【例1-1】过椭圆+=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PFQ的周长的最小值为(  )
A.12        B.14        C.16        D.18
【例1-2】已知点F为椭圆C:+y2=1的左焦点,点P为椭圆C上任意一点,点Q的坐标为(4,3),则|PQ|+|PF|取最大值时,点P的坐标为________.
【例1-3】椭圆+=1的左焦点为F,直线x=m与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是(  )
A.         B.         C.         D.
【例1-4】设P为双曲线x2-=1右支上一点,M,N分别是圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4          B.5          C.6          D.7
【例1-5】已知点M(-3,2)是坐标平面内一定点,若抛物线y2=2x的焦点为F,点Q是该抛物线上的一动点,则|MQ|-|QF|的最小值是(  )
A.        B.3        C.        D.2
【例1-6】已知抛物线的方程为x2=8y,F是其焦点,点A(-2,4),在此抛物线上求一点P,使△APF的周长最小,此时点P的坐标为________.
【例1-7】已知抛物线C:x2=8y的焦点为F,动点Q在C上,圆Q的半径为1,过点F的直线与圆Q切于点P,则·的最小值为________.
二、代数法解决的最值模型
【例2-1】如图,焦点在x轴上的椭圆+=1的离心率e=,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则·的最大值为________.
【例2-2】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式t<e1+e2恒成立,则t的最大值为(  )
A.        B.        C.2        D.
【例2-3】已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF1|=2|PF2|,则△PF1F2面积的最大值是(  )
A.1        B.        C.        D.2
【例2-4】已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若△PQF2的周长为16,则的最大值为________.
【例2-5】设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为(  )
A.        B.        C.        D.1
【例2-6】抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|AB|,则∠AFB的最大值为(  )
A.        B.        C.        D.
【例2-7】已知F为抛物线y2=x的焦点,点A,B在该抛物线上,且位于x轴的两侧,·=2(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是________.
三、范围问题模型
1.用函数思想解决的模型
【例3-1】在椭圆+=1上任意一点P,Q与P关于x轴对称,若有·≤1,则与的夹角余弦值的范围为________.
【例3-2】已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,点P在双曲线的右支上,如果|PF1|=t|PF2|(t∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.
【例3-3】已知过抛物线C:y2=8x的焦点F的直线l交抛物线于P,Q两点,若R为线段PQ的中点,连接OR并延长交抛物线C于点S,则的取值范围是(  )
A.(0,2)     B.[2,+∞)     C.(0,2]     D.(2,+∞)
2.用建立不等关系解决的的模型
【例4-1】已知直线l:y=kx+t与圆C1:x2+(y+1)2=2相交于A,B两点,且△C1AB的面积取得最大值,又直线l与抛物线C2:x2=2y相交于不同的两点M,N,则实数t的取值范围是______________.
【例4-2】过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥,点A在x轴上方,则|FA|的取值范围是(  )
A.     B.     C.     D.
【例4-3】已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),P是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则·的最小值的取值范围是________.
【例4-4】如图,由抛物线y2=12x与圆E:(x-3)2+y2=16的实线部分构成图形Ω,过点P(3,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则|AB|的取值范围为(  )
A.[4,5]       B.[7,8]       C.[6,7]       D.[5,6]
【例4-5】已知点P是椭圆+=1上的动点,且与椭圆的四个顶点不重合,F1、F2分别是椭圆的左、右焦点,O为坐标原点,若点M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是________.
同步练习
1.已知圆M:(x-2)2+y2=1经过椭圆C:+=1(m>3)的一个焦点,圆M与椭圆C的公共点为A,B,点P为圆M上一动点,则P到直线AB的距离的最大值为(  )
A.2-5     B.2-4     C.4-11     D.4-10
2.设P是椭圆+=1上一点,M,N分别是两圆:(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|
+|PN|的最小值和最大值分别为(  )
A.9,12      B.8,11      C.8,12      D.10,12
3.P是双曲线C:-y2=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为(  )
A.1      B.2+      C.4+      D.2+1
4.过双曲线x2-=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为(  )
A.10        B.13        C.16        D.19
5.已知点F是抛物线y2=4x的焦点,P是该抛物线上任意一点,M(5,3),则|PF|+|PM|的最小值是(  )
A.6        B.5        C.4        D.3
6.已知抛物线y2=8x,点Q是圆C:x2+y2+2x-8y+13=0上任意一点,记抛物线上任意一点P到直线x=-2的距离为d,则|PQ|+d的最小值为(  )
A.5        B.4        C.3        D.2
7.如图,已知抛物线C1的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆C2:x2+y2-4x+3=0,过圆心C2的直线l与抛物线和圆C2分别交于点P,Q和M,N,则|PN|+4|QM|的最小值为(  )
A.23        B.42        C.12        D.52
8.抛物线y2=8x的焦点为F,设A,B是抛物线上的两个动点,|AF|+|BF|=|AB|,则∠AFB的最大值为(  )
A.        B.        C.        D.
9.设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)          B.(0,]∪[9,+∞)
C.(0,1]∪[4,+∞)          D.(0,]∪[4,+∞)
10.如图,抛物线E:x2=4y与M:x2+(y-1)2=16交于A,B两点,点P为劣弧上不同于A,B的一个动点,平行于y轴的直线PN交抛物线E于点N,则△PMN的周长的取值范围是(  )
A.(6,12)      B.(8,10)      C.(6,10)      D.(8,12)
11.已知椭圆+=1(a>b>0)的离心率e的取值范围为,直线y=-x+1交椭圆于点M,N,O是坐标原点,且OM⊥ON,则椭圆长轴长的取值范围是(  )
A.[, ]     B.[, ]     C.[, ]     D.[, ]
12.已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值为________,最小值为________.
13.已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.
14.已知点F是抛物线C:y2=4x的焦点,点M为抛物线C上任意一点,过点M向圆(x-1)2+y2=作切线,切点分别为A,B,则四边形AFBM面积的最小值为________.
15.已知点A在椭圆+=1上,点P满足=(λ-1) (λ∈R)(O是坐标原点),且·=72,则线段OP在x轴上的投影长度的最大值为________.
16.椭圆+=1的左、右焦点分别为F1,F2,过椭圆的右焦点F2作一条直线l交椭圆于P,Q两点,则△F1PQ的内切圆面积的最大值是________.
17.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作x轴,y轴垂线,垂足分别为C,D,则|AC|+|BD|的最小值为________.
18.已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.
19.已知斜率为的直线l与抛物线y2=2px(p>0)交于位于x轴上方的不同两点A,B,记直线OA,OB的斜率分别为k1,k2,则k1+k2的取值范围是 .
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录