【高效备课】北师大版七(上) 第1章 丰富的图形世界 2 展开与折叠 第1课时 正方体的展开与折叠 教案

文档属性

名称 【高效备课】北师大版七(上) 第1章 丰富的图形世界 2 展开与折叠 第1课时 正方体的展开与折叠 教案
格式 doc
文件大小 245.1KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2023-09-13 09:51:40

图片预览

文档简介

2展开与折叠
第1课时 正方体的展开与折叠
1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形.
2.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.
3.在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。
【教学重点】
在操作活动中,发展空间观念、积累数学活动经验.
【教学难点】
根据几何体的展开图判断能折叠成什么样的几何体.
一、情境导入,初步认识
在生活中,我们经常见到正方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.
1.正方体有多少个面?多少条棱?多少个顶点?
2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?
【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.
二、思考探究,获取新知
1.正方体的展开图
问题1 将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?
【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.
【归纳结论】将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.
141型(共6种)
231型(共3种)
33型(1种)
222型(1种)
问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?
学生分组进行讨论,得出结论.
【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.
2.平面图形的折叠
问题2下图中的图形经过折叠能否围成一个正方体?
【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.
【归纳结论】若是正方体11种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.
三、运用新知,深化理解
1.(四川巴中中考)如图是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是( )
A.大 B.伟 C.国 D.的
2.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的面上的字是________.
【答案】1.D 2.年
四、师生互动,课堂小结
1.正方体的展开图.
2.通过这节课的学习,学到了哪些新知识?
【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.
【板书设计】
1.布置作业:从教材“习题1.3”中选取.
2.完成练习册中本课时的相应作业.
本节课通过学生自己动手操作,感受正方体的展开与折叠.