【高效备课】北师大版九(上) 第1章 特殊平行四边形 1 菱形的性质与判定 第1课时 菱形的性质 教案

文档属性

名称 【高效备课】北师大版九(上) 第1章 特殊平行四边形 1 菱形的性质与判定 第1课时 菱形的性质 教案
格式 doc
文件大小 204.0KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2023-09-13 10:35:40

图片预览

文档简介

第一章 特殊平行四边形
1 菱形的性质与判定
第1课时 菱形的性质
1.理解菱形的概念,掌握菱形的性质.
2.经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.
3.培养学生主动探究的习惯、严密的思维意识和审美意识.
【教学重点】
理解并掌握菱形的性质.
【教学难点】
形成推理的能力.
一、情境导入,初步认识
四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.
引入定义:有一组邻边相等的平行四边形叫做菱形.
【教学说明】认识菱形,感受菱形的生活价值.
二、思考探究,获取新知
教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.
【教学说明】通过教师的教具操作感受菱形的定义.
如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.
思考:1.这是一个什么样的图形呢?
2.有几条对称轴?
3.对称轴之间有什么位置关系?
4.菱形中有哪些相等的线段?
【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.
【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.
三、运用新知,深化理解
1.见教材P3第1题.
2.见教材P3例1 .
3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)
A.15 B.
C.7.5 D.
【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.
4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.
求证:DE=BE.
分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=BE.
证明:
方法一:如图,连接BD,
∵四边形ABCD是菱形,∠ABC=60°,
∴BD⊥AC,∠DBC=30°,
∵DE∥AC,
∴DE⊥BD,即∠BDE=90°,
∴DE=BE.
方法二:
∵四边形ABCD是菱形,∠ABC=60°,
∴AD∥BC,AC=AD,
∵AC∥DE,
∴四边形ACED是菱形,
∴DE=CE=AC=AD,
又四边形ABCD是菱形,
∴AD=AB=BC=CD,
∴BC=EC=DE,即C为BE的中点,
∴DE=BC=BE.
【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.
5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.
分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;
(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.
解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;
(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2,
又∵OE⊥AB,∠ABD=60°,
∴∠BOE=30°,
∴BE=1.
【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.
学生自主完成,如有一定难度可相互交流,最后由教师总结.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.
1.布置作业:教材“习题1.1”中第1、2 题.
2.完成练习册中相应练习.
本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.