11.3.2 多边形的内角和 教案 2023--2024学年人教版八年级数学上册

文档属性

名称 11.3.2 多边形的内角和 教案 2023--2024学年人教版八年级数学上册
格式 docx
文件大小 43.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-09-14 22:49:17

图片预览

文档简介

多边形的内角和教案
一、教材简析和学生分析
本节课的主要内容是探索多边形的内角和公式,通过旋转、拼图等活动,让学生在直观操作中感知多边形内角和与三角形内角和之间的关系,进一步发展学生的空间观念,为后续学习奠定基础。
二、教学目的
1. 掌握多边形内角和公式,并能够运用公式解决实际问题。
2. 通过旋转、拼图等活动,培养学生的观察能力和空间想象能力。
3. 感受数学与生活的密切联系,体会学有所用的数学思想。
三、重难点
1. 多边形内角和公式的推导过程。
2. 利用多边形内角和公式解决实际问题。
四、教学准备
1. 教师准备多媒体课件、小黑板、教具等。
2. 学生准备彩色笔、纸张等。
五、教学过程
1.复习导入
我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?
2.多边形的内角和
1. 探索四边形的内角和
学生叙述对四边形内角和的认识.
(如:通过测量相加求内角和,通过画四边形对角线分成两个三角形来计算内角和等).
建议:①对于学生提出的不同方法加以及时肯定;②对于通过“分割转化”来求内角和的方法加以强调,并提出是数学学习中的一种常用方法;
③可以启示学生用其他方法证明四边形内角和为360度
A
D
B C
【分成2个三角形180°×2=360°】
【分割成4个三角形180°×4-360°=360°】
【分割成3个三角形180°×3-180°=360°】
小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和
3.例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.
分析:∠A、∠B、∠C、∠D有什么关系?
解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°
又∠A+∠C=180°
∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说,如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?
解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BCD=180°
∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°
∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA
=6×180°
又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°
∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°
这就是说,六边形形的外角和为360°.
如果把六边形换成n边形可以得到同样的结果:
n边形的外角和等于360°.
对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
4. 巩固练习(15分钟)
【类型一】 利用内角和求边数
一个多边形的内角和为540°,则它是(  )
A.四边形 B.五边形
C.六边形 D.七边形
解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.
方法总结:熟记多边形的内角和公式是解题的关键.
【类型二】 求多边形的内角和
一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为(  )
A.1620° B.1800°
C.1980° D.以上答案都有可能
解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.
方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.
【类型三】 复杂图形中的角度计算
如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=(  )
A.450° B.540°
C.630° D.720°
解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.
方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.
5. 作业布置(5分钟)
教科书习题11.3第1,3,5,7,10题.
6. 反思
通过本节课的学习,你有什么收获 哪位同学愿意把你学到的知识给大家分享一下呢
预设1:学生能从知识、探索过程和思想方法三个方面进行总结;
预设2:学生不能有条理的从三个方面进行分类总结。
教师引导语预设:当学生不能有条理的从三个方面进行分类总结时,教师可结合现有的板书,引导学生回忆学习过程,探索过程可结合本节课的学习方式进行回忆。发现问题、提出问题、分析问题和解决问题(或具体的知识点学习:“量”、“拼”、“分”,方程的思想、转化的思想等。),体会数学中的类比和转化的数学思想。