2023-2024学年高一数学苏教版2019必修第一册同步试题 8.2 函数与数学模型(含解析)

文档属性

名称 2023-2024学年高一数学苏教版2019必修第一册同步试题 8.2 函数与数学模型(含解析)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2023-09-13 17:57:54

文档简介

第8章 8.2 函数与数学模型(练习)
考试时间:120分钟 试卷总分:150分
班级 姓名:
选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列函数中,随着的增大,函数值的增长速度最快的是( )
A. B. C. D.
【答案】D
【解析】当x>1时,指数函数增长最快,幂函数其次,对数函数最慢,故函数的增长速度最快.
故选:D.
2.近几个月某地区的口罩的月消耗量逐月增加,若第1月的口罩月消耗量增长率为,第2月的口罩月消耗量增长率为,这两个月口罩月消耗量的月平均增长率为,则以下关系正确的是( )
A. B. C. D.
【答案】D
【解析】由题意,,
时,,,
时,,
,,因此,
综上,.
故选:D.
3.声强级(单位:)与声强的函数关系式为:.若普通列车的声强级是,高速列车的声强级为,则普通列车的声强是高速列车声强的( )
A.倍 B.倍 C.倍 D.倍
【答案】B
【解析】设普通列车的声强为,高速列车的声强为,
因为普通列车的声强级是,高速列车的声强级为,
所以,,
,解得,所以,
,解得,所以,
两式相除得,
则普通列车的声强是高速列车声强的倍.
故选:B.
4.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品
A.60件 B.80件 C.100件 D.120件
【答案】B
【解析】:根据题意,该生产件产品的生产准备费用与仓储费用之和是
这样平均每件的生产准备费用与仓储费用之和为 (为正整数)
由基本不等式,得
当且仅当,即时,取得最小值,
时,每件产品的生产准备费用与仓储费用之和最小
故选:
5.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于的值很小,因此在近似计算中,则r的近似值为
A. B.
C. D.
【答案】D
【解析】由,得
因为,
所以,
即,
解得,
所以
6.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2019年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2022年 B.2023年 C.2024年 D.2025年
【答案】B
【解析】设经过x(x∈N*)年,该校全年投入的科研经费超过2000万元,依题意得1300×(1+0.12)x>2 000,即1.12x>,
因此x>
又x∈N*,故x≥4,即从2023年起,该校全年投入的科研经费超过2 000万元.
故选:B.
7.一种药在病人血液中的量不少于才有效,而低于病人就有危险.现给某病人注射了这种药,如果药在血液中以每小时的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过 ( )小时向病人的血液补充这种药,才能保持疗效.(附:,,结果精确到)
A.小时 B.小时 C.小时 D.小时
【答案】A
【解析】设应在病人注射这种药小时后再向病人的血液补充这种药,
则,整理可得:,

,,
,即应在用药小时后再向病人的血液补充这种药.
故选:A.
8.咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌一直在探索的内容,而2018年至今中国咖啡行业的发展实践证明了以优质的原材料供应以及大量优惠券、买赠活动吸引消费者无疑是开拓中国咖啡市场最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元/杯,其原材料成本为7元/杯,营销成本为5元/杯,且该品牌门店提供如下4种优惠方式:(1)首杯免单,每人限用一次;(2)3.8折优惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5杯送5杯,不限使用人数和使用次数.每位消费者都可以在以上4种优惠方式中选择不多于2种使用.现在某个公司有5位后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数须保持一致;请问,这个公司的技术人员不少于( )人时,无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利.
A.28 B.29 C.30 D.31
【答案】C
【解析】:由题意知,咖啡产品原价为 30 元杯,成本为 12 元杯,
优惠方式(1)免单购买,每购买1杯该品牌门店亏损12元;
优惠方式(2)每杯售价11.4元,每购买1杯该品牌店亏损0.6元;
优惠方式(3)和(4)相当于5折购买,每购买1杯该品牌门店盈利3元;
我们只需要考虑最优的购买方式,每位后勤工作人员能选择2种优惠方式,
必然包含优惠方式(1),可以免单购买5杯咖啡,该品牌门店因此亏损60元,
最优的购买方式是不包含原价购买任何一杯咖啡
,说明只要用原价购买1杯咖啡,哪怕最大程度利用3.8折优惠,花费也一定会超过搭配使用(2)(4)优惠购买咖啡),
故显然该品牌门店必须按照优惠方式(3)和(4)售出20杯以上的咖啡才能盈利,
故技术人员人数一定多于人;
技术人员在人时,免单购买5杯咖啡买5送5购买20杯咖啡折购买14杯咖啡,该品牌门店依旧亏损;
技术人员为30人时,最优购买方式为免单购买5杯咖啡十买5送5购买20杯咖啡十买2送2购买4杯咖啡折购买1杯咖啡,
该品牌门店盈利元; 由于 4,
故技术人员超过30人时,该品牌门店能保证持续盈利.
故选:C.
二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)
9.某杂志以每册元的价格发行时,发行量为万册.经过调查,若单册价格每提高元,则发行量就减少册.要该杂志销售收入不少于万元,每册杂志可以定价为( )
A.元 B.元
C.元 D.元
【答案】BC
【解析】依题意可知,要使该杂志销售收入不少于万元,只能提高销售价,
设每册杂志定价为元,则发行量为万册,
则该杂志销售收入为万元,
所以,化简得,解得,
故选:BC
10.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是.
A.在前三小时内,每小时的产量逐步增加
B.在前三小时内,每小时的产量逐步减少
C.最后一小时内的产量与第三小时内的产量相同
D.最后两小时内,该车间没有生产该产品
【答案】BD
【解析】由该车间持续5个小时的生产总产量(单位:千克)与时间(单位:小时)的函数图像,得:前3小时的产量逐步减少,故A错,B正确;
后2小时均没有生产,故C错,D正确.
故选BD
11.甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,其路程(,,,)关于时间()的函数关系式分别为,,,.则以下结论:正确的是( )
A.当时,甲走在最前面
B.当时,丁走在最前面,当时,丁走在最后面
C.丙不可能走在最前面,也不可能走在最后面
D.如果它们一直运动下去,那么最终走在最前面的是甲
【答案】BCD
【解析】:路程,2,3,关于时间的函数关系是:
,,,,
它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型,
四个函数的大致图象如图所示:
当时,(2),(2),命题A不正确;
根据四种函数的变化特点,对数型函数的变化是先快后慢,当时甲、乙、丙、丁四个物体又重合,从而可知当时,丁走在最前面,当时,丁走在最后面,
命题B正确;
指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,命题D正确.
结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题C正确.
故选:BCD.
12.函数在上有定义,若对任意,,有,则称在上具有性质M,设在上具有性质M,则下列说法错误的是( )
A.在上的图像是连续不断的
B.在上具有性质M
C.对任意,,,,有
D.若在处取得最小值1011,则,
【答案】AB
【解析】对于A,设,在上具有性质M,但不连续,故A错误;
对于B,设,在上具有性质M,但在上不具备性质M,故B错误;
对于C,
,故C正确;
对于D,由性质M得,当时,,又因为,,故,,D正确.
故选:AB
三、填空题:(本题共4小题,每小题5分,共20分)
13.在如今这个5G时代,6G研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G速率有望达到1Tbps,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G数据传输速率有望比5G快100倍,时延达到亚毫秒级水平.香农公式是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率取决于信道宽带,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.若不改变宽带,而将信噪比从11提升至499,则最大信息传递率会提升到原来的_________倍.(结果保留一位小数)
【答案】2.5
【解析】设提升前最大信息传递率为,提升后最大信息传递率为,则
由题意可知,,

所以
倍.
所以最大信息传递率C会提升到原来的倍.
故答案为:2.5
14.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤________次才能达到市场要求(已知lg2≈0.301 0,lg3≈0.477 1).
【答案】8
【解析】设原有溶液a,含杂质2%a,经过n次过滤,含杂质2%a×(1-)n.要使n次过滤后杂质含量不超过0.1%,则 ×100%≤0.1%,即≤,n≥≈7.387 8,所以至少应过滤8次.
15.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______.
【答案】75
【解析】由已知,得,
∴.
设经过天后,一个新丸体积变为,
则,
∴,
∴,.
故答案为:75.
16.设函数().若函数恰有两个不同的零点,,则的取值范围是_______.
【答案】
【解析】
当时,令,可得(因为,所以舍去)
所以|,
在上是减函数,所以.
故答案为:.
四、解答题:(本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)
17.某商场为回馈客户,开展了为期15天的促销活动,经统计,在这15天中,第天进入该商场的人次(单位:百人)近似满足,而人均消费(单位:元)与时间成一次函数,且第3天的人均消费为560元,第10天的人均消费为700元.
(1)求该商场的日收入(单位:元)与时间的函数关系式;
(2)求该商场第几天的日收入最少及日收入的最小值.
【答案】(1);(2)该商场第5天的日收入最少,且日收入的最小值为360000元.
【解析】(1)设,由题意可得,解得,
则.


(2)因为,所以,
则,
当且仅当时,等号成立;
故该商场第5天的日收入最少,且日收入的最小值为360000元.
18.重庆朝天门批发市场某服装店试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的.经试销发现,销售量(件)与销售单价(元)符合函数,且时,;时,.
(1)求函数的解析式;
(2)若该服装店获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?
【答案】(1);(2),销售价定为每件元时,可获得最大利润是元.
【解析】(1)因为 ,所以,
由题意得:,解得:,
所以函数的解析式为:,
(2)由题意知:
利润为,
因为,
所以当时,取得最大值,最大值是.
所以利润与销售单价之间的关系式为,
销售价定为每件元时,可获得最大利润是元.
19.某开发商用万元购得一块土地,计划在此地块建造单层面积是平方米的楼房一座,由于受规划限制,楼房高度限制在层到层中间,经测算如果所建楼房超过层,则每平方米的平均建筑费用为(单位:元)
(1)试写出楼房每平方米平均综合费用关于建造层数的函数关系式;
(2)该楼房应建造多少层,才能使楼房每平方米的平均综合费用最少?若开发商能承受的综合建造费用为每平方米元,则该楼房可以盖多少层?
(注平均综合费用平均建筑费用平均购地费用,平均购地费用)
【答案】(1)
(2)应建造15层,才能使楼房每平方米的平均综合费用最少;该楼房最多可以盖20层.
【解析】(1)根据平均综合费用公式得
(2)

当且仅当,即时等号成立,
即该楼房应建造15层,才能使楼房每平方米的平均综合费用最少
若开发商能承受的综合建造费用为每平方米元,
则,解得
故该楼房最多可以盖20层.
20.冬奥会期间,冰墩墩成热销商品,一家冰墩墩生产公司为加大生产,计划租地建造临时仓库储存货物,若记仓库到车站的距离为(单位:),经过市场调查了解到:每月土地占地费(单位:万元)与成反比,每月库存货物费(单位:万元)与成正比;若在距离车站处建仓库,则与分别为万元和万元.记两项费用之和为.
(1)求关于的解析式;
(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?求出最小值.
【答案】(1)
(2)这家公司应该把仓库建在距离车站6.5千米处,才能使两项费用之和最小,最小值为19万元
【解析】(1)∵每月土地占地费(单位:万元)与成反比,
∴可设,
∵每月库存货物费(单位:万元)与(4x+1)成正比,
∴可设,
又∵在距离车站5km处建仓库时,与分别为12.5万元和7万元,
∴,.

∴.
(2)
当且仅当,即x=6.5时等号成立,
∴这家公司应该把仓库建在距离车站6.5千米处,才能使两项费用之和最小,最小值为19万元.
21.某企业生产一种电子设备,通过市场分析,每台设备的成本与产量满足一定的关系式.设年产量为(,)(单位:台),若年产量不超过70台,则每台设备的成本为(单位:万元);若年产量超过70台不超过200台,则每台设备的成本为(单位:万元),每台设备售价为100万元,假设该企业生产的电子设备能全部售完.
(1)写出年利润(万元)关于年产量(台)的关系式;
(2)当年产量为多少台时,年利润最大,最大值为多少万元?
【答案】(1)
(2)当年产量80台时,年利润最大,最大值为1920万元
【解析】(1)解:当,时,,
当,时,,
所以.
(2)解:当,时,,
所以当时,取得最大值,最大值为.
当,时,,
当且仅当,即时,取得最大值,
因为,所以当年产量台时,年利润最大,最大值为万元.
22.物体在常温下冷却的温度变化可以用牛顿冷却定律来描述:设物体的初始温度为,经过一段时间后的温度为,则,其中为环境温度,为参数.某日室温为,上午8点小王使用某品牌电热养生壶烧1升水(假设加热时水温随时间变化为一次函数,且初始温度与室温一致),8分钟后水温达到点18分时,壶中热水自然冷却到.
(1)求8点起壶中水温(单位:)关于时间(单位:分钟)的函数;
(2)若当日小王在1升水沸腾时,恰好有事出门,于是将养生壶设定为保温状态.已知保温时养生壶会自动检测壶内水温,当壶内水温高于临界值时,设备不工作;当壶内水温不高于临界值时,开始加热至后停止,加热速度与正常烧水一致.若小王在出门34分钟后回来发现养生壶处于未工作状态,同时发现水温恰为.(参考数据:)
①求这34分钟内,养生壶保温过程中完成加热次数;(不需要写出理由)
②求该养生壶保温的临界值.
【答案】(1);
(2)①1次;②.
【解析】(1)当时,设,则,可得,
所以.
当时,,则,可得,
综上,.
(2)①1次,理由如下:由题意,
从降至,则,可得分钟,
所以降至,所需时间分钟,
由于小王出门34分钟,
从加热至,则,可得分钟,则从加热至所需时间分钟;
从降至,则,可得分钟,则从降至所需时间分钟;
故34分钟内至少加热了一次,若加热两次则分钟,
综上,只加热过一次.
②由(i)知:从降温至,所需时间为分钟.
所以在时,水温正好被加热到.
从降至,则,可得,
从加热至,则,可得,
所以在上递减,且,即.第8章 8.2 函数与数学模型(练习)
考试时间:120分钟 试卷总分:150分
班级 姓名:
选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列函数中,随着的增大,函数值的增长速度最快的是( )
A. B. C. D.
2.近几个月某地区的口罩的月消耗量逐月增加,若第1月的口罩月消耗量增长率为,第2月的口罩月消耗量增长率为,这两个月口罩月消耗量的月平均增长率为,则以下关系正确的是( )
A. B. C. D.
3.声强级(单位:)与声强的函数关系式为:.若普通列车的声强级是,高速列车的声强级为,则普通列车的声强是高速列车声强的( )
A.倍 B.倍 C.倍 D.倍
4.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品
A.60件 B.80件 C.100件 D.120件
5.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于的值很小,因此在近似计算中,则r的近似值为
A. B.
C. D.
6.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2019年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2022年 B.2023年 C.2024年 D.2025年
7.一种药在病人血液中的量不少于才有效,而低于病人就有危险.现给某病人注射了这种药,如果药在血液中以每小时的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过 ( )小时向病人的血液补充这种药,才能保持疗效.(附:,,结果精确到)
A.小时 B.小时 C.小时 D.小时
8.咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌一直在探索的内容,而2018年至今中国咖啡行业的发展实践证明了以优质的原材料供应以及大量优惠券、买赠活动吸引消费者无疑是开拓中国咖啡市场最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元/杯,其原材料成本为7元/杯,营销成本为5元/杯,且该品牌门店提供如下4种优惠方式:(1)首杯免单,每人限用一次;(2)3.8折优惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5杯送5杯,不限使用人数和使用次数.每位消费者都可以在以上4种优惠方式中选择不多于2种使用.现在某个公司有5位后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数须保持一致;请问,这个公司的技术人员不少于( )人时,无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利.
A.28 B.29 C.30 D.31
二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)
9.某杂志以每册元的价格发行时,发行量为万册.经过调查,若单册价格每提高元,则发行量就减少册.要该杂志销售收入不少于万元,每册杂志可以定价为( )
A.元 B.元
C.元 D.元
10.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是.
A.在前三小时内,每小时的产量逐步增加
B.在前三小时内,每小时的产量逐步减少
C.最后一小时内的产量与第三小时内的产量相同
D.最后两小时内,该车间没有生产该产品
11.甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,其路程(,,,)关于时间()的函数关系式分别为,,,.则以下结论:正确的是( )
A.当时,甲走在最前面
B.当时,丁走在最前面,当时,丁走在最后面
C.丙不可能走在最前面,也不可能走在最后面
D.如果它们一直运动下去,那么最终走在最前面的是甲
12.函数在上有定义,若对任意,,有,则称在上具有性质M,设在上具有性质M,则下列说法错误的是( )
A.在上的图像是连续不断的
B.在上具有性质M
C.对任意,,,,有
D.若在处取得最小值1011,则,
三、填空题:(本题共4小题,每小题5分,共20分)
13.在如今这个5G时代,6G研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G速率有望达到1Tbps,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G数据传输速率有望比5G快100倍,时延达到亚毫秒级水平.香农公式是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率取决于信道宽带,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.若不改变宽带,而将信噪比从11提升至499,则最大信息传递率会提升到原来的_________倍.(结果保留一位小数)
14.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤________次才能达到市场要求(已知lg2≈0.301 0,lg3≈0.477 1).
15.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______.
16.设函数().若函数恰有两个不同的零点,,则的取值范围是_______.
四、解答题:(本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)
17.某商场为回馈客户,开展了为期15天的促销活动,经统计,在这15天中,第天进入该商场的人次(单位:百人)近似满足,而人均消费(单位:元)与时间成一次函数,且第3天的人均消费为560元,第10天的人均消费为700元.
(1)求该商场的日收入(单位:元)与时间的函数关系式;
(2)求该商场第几天的日收入最少及日收入的最小值.
18.重庆朝天门批发市场某服装店试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的.经试销发现,销售量(件)与销售单价(元)符合函数,且时,;时,.
(1)求函数的解析式;
(2)若该服装店获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?
19.某开发商用万元购得一块土地,计划在此地块建造单层面积是平方米的楼房一座,由于受规划限制,楼房高度限制在层到层中间,经测算如果所建楼房超过层,则每平方米的平均建筑费用为(单位:元)
(1)试写出楼房每平方米平均综合费用关于建造层数的函数关系式;
(2)该楼房应建造多少层,才能使楼房每平方米的平均综合费用最少?若开发商能承受的综合建造费用为每平方米元,则该楼房可以盖多少层?
(注平均综合费用平均建筑费用平均购地费用,平均购地费用)
20.冬奥会期间,冰墩墩成热销商品,一家冰墩墩生产公司为加大生产,计划租地建造临时仓库储存货物,若记仓库到车站的距离为(单位:),经过市场调查了解到:每月土地占地费(单位:万元)与成反比,每月库存货物费(单位:万元)与成正比;若在距离车站处建仓库,则与分别为万元和万元.记两项费用之和为.
(1)求关于的解析式;
(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?求出最小值.
21.某企业生产一种电子设备,通过市场分析,每台设备的成本与产量满足一定的关系式.设年产量为(,)(单位:台),若年产量不超过70台,则每台设备的成本为(单位:万元);若年产量超过70台不超过200台,则每台设备的成本为(单位:万元),每台设备售价为100万元,假设该企业生产的电子设备能全部售完.
(1)写出年利润(万元)关于年产量(台)的关系式;
(2)当年产量为多少台时,年利润最大,最大值为多少万元?
22.物体在常温下冷却的温度变化可以用牛顿冷却定律来描述:设物体的初始温度为,经过一段时间后的温度为,则,其中为环境温度,为参数.某日室温为,上午8点小王使用某品牌电热养生壶烧1升水(假设加热时水温随时间变化为一次函数,且初始温度与室温一致),8分钟后水温达到点18分时,壶中热水自然冷却到.
(1)求8点起壶中水温(单位:)关于时间(单位:分钟)的函数;
(2)若当日小王在1升水沸腾时,恰好有事出门,于是将养生壶设定为保温状态.已知保温时养生壶会自动检测壶内水温,当壶内水温高于临界值时,设备不工作;当壶内水温不高于临界值时,开始加热至后停止,加热速度与正常烧水一致.若小王在出门34分钟后回来发现养生壶处于未工作状态,同时发现水温恰为.(参考数据:)
①求这34分钟内,养生壶保温过程中完成加热次数;(不需要写出理由)
②求该养生壶保温的临界值.