【真题分类汇编】专题08 分离定律和自由组合定律
1. 孟德尔杂交试验成功的重要因素之一是选择了严格自花授粉的豌豆作为材料。自然条件下豌豆大多数是纯合子,主要原因是( )
A. 杂合子豌豆的繁殖能力低 B. 豌豆的基因突变具有可逆性
C. 豌豆的性状大多数是隐性性状 D. 豌豆连续自交,杂合子比例逐渐减小
2. 若马的毛色受常染色体上一对等位基因控制,棕色马与白色马交配,均为淡棕色马,随机交配,中棕色马:淡棕色马:白色马=1:2:1。下列叙述正确的是( )
A. 马的毛色性状中,棕色对白色为完全显性
B. 中出现棕色、淡棕色和白色是基因重组的结果
C. 中相同毛色的雌雄马交配,其子代中雌性棕色马所占的比例为3/8
D. 中淡棕色马与棕色马交配,其子代基因型的比例与表现型的比例相同
3. 某种二倍体植物的 n 个不同性状由 n 对独立遗传的基因控制(杂合子表现显性性状)。已知植株 A 的 n对基因均杂合。理论上,下列说法错误的是( )
A. 植株 A 的测交子代会出现 2n 种不同表现型的个体
B. n越大,植株 A 测交子代中不同表现型个体数目彼此之间的差异越大
C. 植株 A 测交子代中 n对基因均杂合的个体数和纯合子的个体数相等
D. n ≥2 时,植株 A 的测交子代中杂合子的个体数多于纯合子的个体数
4. 匍匐鸡是一种矮型鸡,匍匐性状基因(A)对野生性状基因(a)为显性,这对基因位于常染色体上,且A基因纯合时会导致胚胎死亡。某鸡群中野生型个体占20%,匍匐型个体占80%,随机交配得到F1,F1雌、雄个体随机交配得到F2。下列有关叙述正确的是( )
A. F1中匍匐型个体的比例为12/25 B. 与F1相比,F2中A基因频率较高
C. F2中野生型个体的比例为25/49 D. F2中A基因频率为2/9
5. 浅浅的小酒窝,笑起来像花儿一样美。酒窝是由人类常染色体的单基因所决定,属于显性遗传。甲、乙分别代表有、无酒窝的男性,丙、丁分别代表有、无酒窝的女性。下列叙述正确的是( )
A. 若甲与丙结婚,生出的孩子一定都有酒窝
B. 若乙与丁结婚,生出的所有孩子都无酒窝
C. 若乙与丙结婚,生出的孩子有酒窝的概率为50%
D. 若甲与丁结婚,生出一个无酒窝的男孩,则甲的基因型可能是纯合的
6. 狗的毛色受一组复等位基因控制,如表列举了基因型与毛色的对应关系,据此推测基因型S+SW狗的毛色是( )
基因型 S+S+、S+SP、S+SV SPSP、SPSV SVSV、SVSW
毛色 纯有色(非白色) 花斑 面部、腰部、眼部白斑
A. 花斑 B. 纯有色(非白色) C. 白色 D. 面部白斑
7. 水稻的某病害是由某种真菌(有多个不同菌株)感染引起的。水稻中与该病害抗性有关的基因有3个(A1、A2、a);基因A1控制全抗性状(抗所有菌株),基因A2控制抗性性状(抗部分菌株),基因a控制易感性状(不抗任何菌株),且A1对A2为显性,A1对a为显性,A2对a为显性。现将不同表现型的水稻植株进行杂交,子代可能会出现不同的表现型及其分离比。下列叙述错误的是( )
A. 全抗植株与抗性植株杂交,子代可能出现全抗:抗性=3:1
B. 抗性植株与易感植株杂交,子代可能出现抗性:易感=1:1
C. 全抗植株与易感植株杂交,子代可能出现全抗:抗性=1:1
D. 全抗植株与抗性植株杂交,子代可能出现全抗:抗性:易感=2:1:1
8. 某种小鼠的毛色受AY(黄色)、A(鼠色)、a(黑色)3个基因控制,三者互为等位基因,AY对A、a为完全显性,A对a为完全显性,并且基因型AYAY胚胎致死(不计入个体数)。下列叙述错误的是( )
A. 若AYa个体与AYA个体杂交,则F1有3种基因型
B. 若AYa个体与Aa个体杂交,则F1有3种表现型
C. 若1只黄色雄鼠与若干只黑色雌鼠杂交,则F1可同时出现鼠色个体与黑色个体
D. 若1只黄色雄鼠与若干只纯合鼠色雌鼠杂交,则F1可同时出现黄色个体与鼠色个体
9. 某玉米植株产生的配子种类及比例为YR:Yr:yR:yr=1:1:1:1。若该个体自交,其F1中基因型为YyRR个体所占的比例为( )
A. B. C. D.
10. 若某哺乳动物毛发颜色由基因De(褐色)、Df(灰色)、d(白色)控制,其中De和Df分别对d完全显性。毛发形状由基因H(卷毛)、h(直毛)控制。控制两种性状的等位基因均位于常染色体上且独立遗传。基因型为DedHh和DfdHh的雌雄个体交配。下列说法正确的是( )
A. 若De对Df共显性、H对h完全显性,则F1有6种表现型
B. 若De对Df共显性、H对h不完全显性,则F1有12种表现型
C. 若De对Df不完全显性、H对h完全显性,则F1有9种表现型
D. 若De对Df完全显性、H对h不完全显性,则F1有8种表现型
11. 香豌豆花紫色色素的形成需要两对等位基因(以A/a、B/b表示)中显性基因同时存在,这两对等位基因独立遗传,具体作用机制如图。现对基因型为AaBb的紫花香豌豆进行测交,F1中紫花所占的比例应为( )
A. B. C. D.
12. 甲、乙、丙分别代表三个不同的纯合白色籽粒玉米品种甲分别与乙、丙杂交产生F1,F1自交产生F2,结果如表。根据结果,下列叙述错误的是( )
组别 杂交组合 F1 F2
1 甲×乙 红色籽粒 901红色籽粒,699白色籽粒
2 甲×丙 红色籽粒 630红色籽粒,490白色籽粒
A. 若乙与丙杂交,F1全部为红色籽粒,则F2玉米籽粒性状比为9红色:7白色
B. 若乙与丙杂交,F1全部为红色籽粒,则玉米籽粒颜色可由三对基因控制
C. 组1中的F1与甲杂交所产生玉米籽粒性状比为3红色:1白色
D. 组2中的F1与丙杂交所产生玉米籽粒性状比为1红色:1白色
13. 某研究小组从野生型高秆(显性)玉米中获得了2个矮秆突变体,为了研究这2个突变体的基因型,该小组让这2个矮秆突变体(亲本)杂交得F1,F1自交得F2,发现F2中表型及其比例是高秆:矮秆:极矮秆=9:6:1。若用A、B表示显性基因,则下列相关推测错误的是( )
A. 亲本的基因型为aaBB和AAbb,F1的基因型为AaBb
B. F2矮秆的基因型有aaBB、AAbb、aaBb、Aabb,共4种
C. 基因型是AABB的个体为高秆,基因型是aabb的个体为极矮秆
D. F2矮秆中纯合子所占比例为1/2,F2高秆中纯合子所占比例为1/16
14. 某种植物的宽叶/窄叶由等位基因A/a控制,A基因控制宽叶性状;高茎/矮茎由等位基因B/b控制,B基因控制高茎性状。这2对等位基因独立遗传。为研究该种植物的基因致死情况,某研究小组进行了两个实验,实验①:宽叶矮茎植株自交,子代中宽叶矮茎∶窄叶矮茎=2∶1;实验②:窄叶高茎植株自交,子代中窄叶高茎∶窄叶矮茎=2∶1。下列分析及推理中错误的是 ( )
A. 从实验①可判断A基因纯合致死,从实验②可判断B基因纯合致死
B. 实验①中亲本的基因型为Aabb,子代中宽叶矮茎的基因型也为Aabb
C. 若发现该种植物中的某个植株表现为宽叶高茎,则其基因型为AaBb
D. 将宽叶高茎植株进行自交,所获得子代植株中纯合子所占比例为1/4
15. 某种自花传粉植物的等位基因A/a和B/b位于非同源染色体上。A/a控制花粉育性,含A的花粉可育;含a的花粉50%可育、50%不育。B/b控制花色,红花对白花为显性。若基因型为AaBb的亲本进行自交,则下列叙述错误的是( )
A. 子一代中红花植株数是白花植株数的3倍
B. 子一代中基因型为aabb的个体所占比例是
C. 亲本产生的可育雄配子数是不育雄配子数的3倍
D. 亲本产生的含B的可育雄配子数与含b的可育雄配子数相等
16. 人类的ABO血型是由常染色体上的基因IA、IB和i三者之间互为等位基因)决定的。IA基因产物使得红细胞表面带有A抗原,IB基因产物使得红细胞表面带有B抗原。IAIB基因型个体红细胞表面有A抗原和B抗原,ii基型个体红细胞表面无A抗原和B抗原。现有一个家系的系谱图(如图),对家系中各成员的血型进行检测,结果如表,其中“+”表示阳性反应,“-”表示阴性反应。下列叙述正确的是( )
个体 1 2 3 4 5 6 7
A抗原抗体 + + - + + - -
B抗原抗体 + - + + - + -
A. 个体5基因型为IAi,个体6基因型为IBi
B. 个体1基因型为IAIB,个体2基因型为IAIA或IAi
C. 个体3基因型为IBIB或IBi,个体4基因型为IAIB
D. 若个体5与个体6生第二个孩子,该孩子的基因型一定是ii
17. 某植物的野生型(AABBcc)有成分R,通过诱变等技术获得3个无成分R的稳定遗传突变体(甲、乙和丙)。突变体之间相互杂交,F1均无成分R。然后选其中一组杂交的F1(AaBbCc)作为亲本,分别与3个突变体进行杂交,结果见下表:
杂交编号 杂交组合 子代表型(株数)
Ⅰ F1×甲 有(199),无(602)
Ⅱ F1×乙 有(101),无(699)
Ⅲ F1×丙 无(795)
注:“有”表示有成分 R,“无”表示无成分R
用杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株杂交,理论上其后代中有成分R植株所占比例为( )
A. B. C. D.
18. 果蝇(2n=8)杂交实验中,F2某一雄果蝇体细胞中有4条染色体来自F1雄果蝇,这4条染色体全部来自亲本(P)雄果蝇的概率是( )
A. B. C. D.
19. 某作物的雄性育性与细胞质基因(P、H)和细胞核基因(D、d)相关。现有该作物的4个纯合品种:①(P)dd(雄性不育)、②(H)dd(雄性可育)、③(H)DD(雄性可育)、④(P)DD(雄性可育),科研人员利用上述品种进行杂交实验,成功获得生产上可利用的杂交种。下列有关叙述错误的是( )
A. ①和②杂交,产生的后代雄性不育
B. ②③④自交后代均为雄性可育,且基因型不变
C. ①和③杂交获得生产上可利用的杂交种,其自交后代出现性状分离,故需年年制种
D. ①和③杂交后代作父本,②和③杂交后代作母本,二者杂交后代雄性可育和不育的比例为3∶1
20. 已知某二倍体雌雄同株(正常株)植物,基因t纯合导致雄性不育而成为雌株,宽叶与窄叶由等位基因(A、a)控制。将宽叶雌株与窄叶正常株进行杂交实验,其F1全为宽叶正常株。F1自交产生F2,F2的表现型及数量:宽叶雌株749株、窄叶雌株251株、宽叶正常株2250株、窄叶正常株753株。回答下列问题:
(1)与正常株相比,选用雄性不育株为母本进行杂交实验时操作更简便,不需进行_____处理。授粉后需套袋,其目的是______。
(2)为什么F2会出现上述表现型及数量?______。
(3)若取F2中纯合宽叶雌株与杂合窄叶正常株杂交,则其子代(F3)的表现型及比例为_____,F3群体随机授粉,F4中窄叶雌株所占的比例为_____。
(4)选择F2中的植株,设计杂交实验以验证F1植株的基因型,用遗传图解表示_______。
21. 科研人员用一种甜瓜(2n)的纯合亲本进行杂交得到F1,F1自交得到F2,结果如下表。
性状 控制基因及其所在染色体 母本 父本 F1 F2
果皮底色 A/a,4号染色体 黄绿色 黄色 黄绿色 黄绿色:黄色≈3:1
果肉颜色 B/b,9号染色体 白色 橘红色 橘红色 橘红色:白色≈3:1
果皮覆纹 E/e,4号染色体 F/f,2号染色体 无覆纹 无覆纹 有覆纹 有覆纹:无覆纹≈9:7
已知A、E基因同在一条染色体上,a、e基因同在另一条染色体上,当E和F同时存在时果皮才表现出有覆纹性状。不考虑交叉互换、染色体变异、基因突变等情况,回答下列问题。
(1)果肉颜色的显性性状是____________。
(2)F1的基因型为____________,F1产生的配子类型有_______种。
(3)F2的表现型有____________种,F2中黄绿色有覆纹果皮、黄绿色无覆纹果皮、黄色无覆纹果皮的植株数量比是__________,F2中黄色无覆纹果皮橘红色果肉的植株中杂合子所占比例是_________。
22. 植物的性状有的由1对基因控制,有的由多对基因控制。一种二倍体甜瓜的叶形有缺刻叶和全缘叶,果皮有齿皮和网皮。为了研究叶形和果皮这两个性状的遗传特点,某小组用其因型不同的甲乙丙丁4种甜瓜种子进行实验,其中甲和丙种植后均表现为缺刻叶网皮。杂交实验及结果见下表(实验②中F1自交得F2)。
实验 亲本 F1 F2
① 甲×乙 1/4缺刻叶齿皮,1/4缺刻叶网皮1/4全缘叶齿皮,1/4全缘叶网皮 /
② 丙×丁 缺刻叶齿皮 9/16缺刻叶齿皮,3/16缺刻叶网皮3/16全缘叶齿皮,1/16全缘叶网皮
回答下列问题:
(1)根据实验①可判断这2对相对性状的遗传均符合分离定律,判断的依据是 。根据实验②,可判断这2对相对性状中的显性性状是_________。
(2)甲乙丙丁中属于杂合体的是_________。
(3)实验②的F2中纯合体所占的比例为_________。
(4)假如实验②的F2中缺刻叶齿皮:缺刻叶网皮:全缘叶齿皮:全缘叶网皮不是9:3:3:1,而是45:15:3:1,则叶形和果皮这两个性状中由1对等位基因控制的是_________,判断的依据是 。
23. 某种植物的花色有白、红和紫三种,花的颜色由花瓣中色素决定,色素的合成途径是:白色红色紫色。其中酶1的合成由基因A控制,酶2的合成由基因B控制,基因A和B位于非同源染色体上。回答下列问题。
(1)现有紫花植株(基因型为AaBb)与红花杂合体植株杂交,子代植株表现型及其比例为 ______;子代中红花植株的基因型是 ______;子代白花植株中纯合体所占的比例是 ______。
(2)已知白花纯合体的基因型有2种。现有1株白花纯合体植株甲,若要通过杂交实验(要求选用1种纯合体亲本与植株甲只进行1次杂交)来确定其基因型,请写出所选用的亲本基因型、预期实验结果和结论。
24. 大蜡螟是一种重要的实验用尾虫,为了研究大蜡螟幼虫体色遗传规律。科研人员用深黄、灰黑、白黄3种体色的品系进行了系列实验,正交实验数据如下表(反交实验结果与正交一致)。请回答下列问题。
表1:深黄色与灰黑色品系杂交实验结果
杂交组合 子代体色
深黄 灰黑
深黄(P)♀×灰黑(P)♂ 2113 0
深黄(F1)♀×深黄(F1)♂ 1526 498
深黄(F1)♂×深黄(P)♀ 2314 0
深黄(F1)♀×灰黑(P)♂ 1056 1128
(1)由表1可推断大蜡螟幼虫的深黄体色遗传属于___染色体上___性遗传。
(2)深黄、灰黑、白黄基因分别用Y、G、W表示,表1中深黄的亲本和F1个体基因型分别是_____________,表2、表3中F1基因型分别是__________________。群体中Y、G、W三个基因位于一对同源染色体。
(3)若从表2中选取黄色(YW)雌、雄个体各50只和表3中选取黄色(GW)雌、雄个体各50只,进行随机杂交,后代中黄色个体占比理论上为__________________。
表2:深黄色与白黄色品系杂交实验结果
杂交组合 子代体色
深黄 黄 白黄
深黄(P)♀×白黄(P)♂ 0 2357 0
黄(F1)♀×黄(F1)♂ 514 1104 568
黄(F1)♂×深黄(P)♀ 1327 1293 0
黄(F1)♀×白黄(P)♂ 0 917 864
表3:灰黑色与白黄色品系杂交实验结果
杂交组合 子代体色
灰黑 黄 白黄
灰黑(P)♀×白黄(P)♂ 0 1237 0
黄(F1)♀×黄(F1)♂ 754 1467 812
黄(F1)♂×灰黑(P)♀ 754 1342 0
黄(F1)♀×白黄(P)♂ 0 1124 1217
(4)若表1、表2、表3中深黄(YY♀、YG♀♂)和黄色(YW♀♂、GW♀♂)个体随机杂交,后代会出现____种表现型和____种基因型(YY/GG/WW/YG/YW/GW)。
(5)若表1中两亲本的另一对同源染色体上存在纯合致死基因S和D(两者不发生交换重组),基因排列方式为__________________,推测F1互交产生的F2深黄与灰黑的比例为__________________;在同样的条件下,子代的数量理论上是表1中的__________________。
25. 乙烯是植物果实成熟所需的激素,阻断乙烯的合成可使果实不能正常成熟,这一特点可以用于解决果实不耐储存的问题,以达到增加经济效益的目的。现有某种植物的3个纯合子(甲、乙、丙),其中甲和乙表现为果实不能正常成熟(不成熟),丙表现为果实能正常成熟(成熟),用这3个纯合子进行杂交实验,F1自交得F2,结果见下表:
实验 杂交组合 F1表现型 F2表现型及分离比
① 甲×丙 不成熟 不成熟:成熟=3:1
② 乙×丙 成熟 成熟:不成熟=3:1
③ 甲×乙 不成熟 不成熟:成熟=13:3
回答下列问题:
(1)利用物理、化学等因素处理生物,可以使生物发生基因突变,从而获得新的品种。通常,基因突变是指 。
(2)从实验①和②的结果可知,甲和乙的基因型不同,判断的依据是 。
(3)已知丙的基因型为aaBB,且B基因控制合成的酶能够催化乙烯的合成,则甲、乙的基因型分别是 ;实验③中,F2成熟个体的基因型是 ,F2不成熟个体中纯合子所占的比例为_______。
26. 油菜是我国重要的油料作物,培育高产优质新品种意义重大。油菜的杂种一代会出现杂种优势(产量等性状优于双亲),但这种优势无法在自交后代中保持。杂种优势的利用可显著提高油菜籽的产量。
(1)油菜具有两性花,去雄是杂交的关键步骤,但人工去雄耗时费力,在生产上不具备可操作性。我国学者发现了油菜雄性不育突变株(雄蕊异常,肉眼可辨),利用该突变株进行的杂交实验如下:
①由杂交一结果推测,育性正常与雄性不育性状受______对等位基因控制。在杂交二中,雄性不育为______性性状。
②杂交一与杂交二的F1表现型不同的原因是育性性状由位于同源染色体相同位置上的3个基因(A1、A2、A3)决定。品系1、雄性不育株、品系3的基因型分别为A1A1、A2A2、A3A3。根据杂交一、二的结果,判断A1、A2、A3之间的显隐性关系是______。
(2)利用上述基因间的关系,可大量制备兼具品系1、3优良性状的油菜杂交种子(YF1),供农业生产使用,主要过程如下:
①经过图中虚线框内的杂交后,可将品系3的优良性状与______性状整合在同一植株上,该植株所结种子的基因型及比例为______。
②将上述种子种成母本行,将基因型为______的品系种成父本行,用于制备YF1。
③为制备YF1,油菜刚开花时应拔除母本行中具有某一育性性状的植株。否则,得到的种子给农户种植后,会导致油菜籽减产,其原因是______。
(3)上述辨别并拔除特定植株的操作只能在油菜刚开花时(散粉前)完成,供操作的时间短,还有因辨别失误而漏拔的可能。有人设想:“利用某一直观的相对性状在油菜开花前推断植株的育性”,请用控制该性状的等位基因(E、e)及其与A基因在染色体上的位置关系展示这一设想。______。
27. 玉米是雌雄同株异花植物,利用玉米纯合雌雄同株品系M培育出雌株突变品系,该突变品系的产生原因是2号染色体上的基因Ts突变为ts,Ts对ts为完全显性。将抗玉米螟的基因A转入该雌株品系中获得甲、乙两株具有玉米螟抗性的植株,但由于A基因插入的位置不同,甲植株的株高表现正常,乙植株矮小。为研究A基因的插入位置及其产生的影响,进行了以下实验:
实验一:品系M(TsTs)×甲(Atsts)→F1中抗螟:非抗螟约为1:1
实验二:品系M(TsTs)×乙(Atsts)→F1中抗螟矮株:非抗螟正常株高约为1:1
( 1)实验一中作为母本的是______,实验二的F1中非抗螟植株的性别表现为______(填:“雌雄同株”“雌株”或“雌雄同株和雌株”)。
(2)选取实验一的F1抗螟植株自交,F2中抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株约为2:1:1。由此可知,甲中转入的A基因与ts基因______(填:“是”或“不是”)位于同一条染色体上, F2中抗螟雌株的基因型是______。若将 F2中抗螟雌雄同株与抗螟雌株杂交,子代的表现型及比例为______。
(3 )选取实验二的F1抗螟矮株自交,F2中抗螟矮株雌雄同株:抗螟矮株雌株:非抗螟正常株高雄雄同株:非抗螟正常株高雄株约为3:1:3:1,由此可知,乙中转入的A基因______(填:“位于”或“不位于”)2号染色体上,理由是______。 F2中抗螟矮株所占比例低于预期值,说明A基因除导致植株矮小外,还对F1的繁殖造成影响,结合实验二的结果推断这一影响最可能是______。 F2抗螟矮株中ts基因的频率为______,为了保存抗螟矮株雌株用于研究,种植F2抗螟矮株使其随机受粉,并仅在雌株上收获籽粒,籽粒种植后发育形成的植株中抗螟矮株雌株所占的比例为______。
28. 我国科学家利用栽培稻(H)与野生稻(D)为亲本,通过杂交育种方法并辅以分子检测技术,选育出了L12和L7两个水稻新品系。L12的12号染色体上带有D的染色体片段(含有耐缺氮基因TD),L7的7号染色体上带有D的染色体片段(含有基因SD),两个品系的其他染色体均来自于H(图1)。H的12号和7号染色体相应片段上分别含有基因TH和SH。现将两个品系分别与H杂交,利用分子检测技术对实验一亲本及部分F2的TD/TH基因进行检测,对实验二亲本及部分F2的SD/SH基因进行检测,检测结果以带型表示(图2)。
回答下列问题:
(1)为建立水稻基因组数据库,科学家完成了水稻__________条染色体的DNA测序。
(2)实验一F2中基因型TDTD对应的是带型__________。理论上,F2中产生带型Ⅰ、Ⅱ和Ⅲ的个体数量比为__________。
(3)实验二F2中产生带型α、β和γ的个体数量分别为12、120和108,表明F2群体的基因型比例偏离__________定律。进一步研究发现,F1的雌配子均正常,但部分花粉无活性。已知只有一种基因型的花粉异常,推测无活性的花粉带有__________(填“SD”或“SH”)基因。
(4)以L7和L12为材料,选育同时带有来自D的7号和12号染色体片段的纯合品系X(图3)。主要实验步骤包括:①________________________________________;②对最终获得的所有植株进行分子检测,同时具有带型__________的植株即为目的植株。
(5)利用X和H杂交得到F1,若F1产生的无活性花粉所占比例与实验二结果相同,雌配子均有活性,则F2中与X基因型相同的个体所占比例为__________。
答案和解析
1.【答案】D
【解析】【分析】连续自交可以提高纯合子的纯合度。
【详解】
孟德尔杂交试验选择了严格自花授粉的豌豆作为材料,而连续自交可以提高纯合子的纯合度,因此,自然条件下豌豆经过连续数代严格自花授粉后,大多数都是纯合子,D正确。
故选D。
2.【答案】D
【解析】【分析】
分析题中信息:“棕色马与白色马交配,均为淡棕色马,随机交配,中棕色马:淡棕色马:白色马=1:2:1。”可知马的毛色的控制属于不完全显性。
【解答】
A、马的毛色性状中,棕色对白色为不完全显性,A错误;
B、中出现棕色、淡棕色和白色是基因分离的结果,B错误;
C、中相同毛色的雌雄马交配,其子代中棕色马所占的比例为1/4+2/4×1/4=3/8,雌性棕色马所占的比例为3/16,C错误;
D、中淡棕色马与棕色马交配,其子代基因型的比例为1:1,,表现型为淡棕色马与棕色马,比例为1:1, D正确。
故选D。
3.【答案】B
【解析】【分析】
本题主要考查遗传规律,考查学生能否形成以孟德尔遗传规律为基础,从特殊推导到一般的科学思维过程。
【解答】
A、 n 个不同性状由n 对独立遗传的基因控制,一对性状的测交子代有2种表现型,则n 对性状的测交子代有2n 种表现型,故A项说法正确。
B、 n 个不同性状由n 对独立遗传的基因控制,植株A测交子代中不同表现型个体数目比例均符合测交比例,故B项说法错误。
C、植株A测交子代中n 对基因均杂合的个体数和纯合子的个体数相等,故C项说法正确。
D、 n =2时,测交子代基因型比例是1:1:1:1,其中纯合子占据1/4,纯合子所含比例为1/2n,随着n 的增大,测交子代纯合子所占比例越来越小,故D项说法正确。
故选B。
4.【答案】D
【解析】【分析】
匍匐鸡是一种矮型鸡,匍匐性状基因(A)对野生性状基因(a)为显性,这对基因位于常染色体上,且A基因纯合时会导致胚胎死亡。因此种群中只存在Aa和aa两种基因型的个体。
【详解】
A、根据题意,A基因纯合时会导致胚胎死亡,因此匍匐型个体Aa占80%,野生型个体aa占20%,则A基因频率=80%×1/2=40%,a=60%,子一代中AA=40%×40%=16%,Aa=2×40%×60%=48%,aa=60%×60%=36%,由于A基因纯合时会导致胚胎死亡,所以子一代中Aa占(48%)÷(48%+36%)=4/7,A错误;
B、由于A基因纯合时会导致胚胎死亡,因此每一代都会使A的基因频率减小,故与F1相比,F2中A基因频率较低,B错误;
C、子一代Aa占4/7,aa占3/7,产生的配子为A=4/7×1/2=2/7,a=5/7,子二代中aa=5/7×5/7=25/49,由于AA=2/7×2/7=4/49致死,因此子二代aa占25/49÷(1-4/49)=5/9,C错误;
D、子二代aa占5/9,Aa占4/9,因此A的基因频率为4/9×1/2=2/9,D正确。
故选D。
5.【答案】B
【解析】A、结合题意可知,甲为有酒窝男性,基因型为AA或Aa,丙为有酒窝女性,基因型为AA或Aa,若两者均为Aa,则生出的孩子基因型可能为aa,表现为无酒窝,A错误;
B、乙为无酒窝男性,基因型为aa,丁为无酒窝女性,基因型为aa,两者结婚,生出的孩子基因型均为aa,表现为无酒窝,B正确;
C、乙为无酒窝男性,基因型为aa,丙为有酒窝女性,基因型为AA或Aa。两者婚配,若女性基因型为AA,则生出的孩子均为有酒窝;若女性基因型为Aa,则生出的孩子有酒窝的概率为,C错误;
D、甲为有酒窝男性,基因型为AA或Aa,丁为无酒窝女性,基因型为aa,生出一个无酒窝的男孩aa,则甲的基因型只能为Aa,是杂合子,D错误。
故选:B。
结合题意分析可知,酒窝属于常染色体显性遗传,设相关基因为A、a,则有酒窝为AA和Aa,无酒窝为aa,据此分析作答。
本题主要考查基因分离定律的应用,要求考生识记分离定律的实质,能正确分析题干,明确相关基因型,再结合所学知识判断各选项。
6.【答案】B
【解析】S+S+、S+SP、S+SV都表现为纯有色(非白色),说明S+相对于SP、SV是显性,控制纯有色;SPSP、SPSV都表现为花斑,说明SP相对于SV是显性,控制花斑;SVSV、SVSW都表现为面部、腰部、眼部白斑,说明SV相对于SW是显性,控制面部、腰部、眼部白斑。因此,显隐性关系为:S+>SP>SV>SW,则基因型S+SW狗的毛色是纯有色(非白色)。
故选:B。
1、基因分离定律定律的实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而分离,分别进入不同的配子中,随配子独立遗传给后代;复等位基因的遗传同样遵循分离定律。
2、小鼠的毛色受复等位基因S+、SP、SV、SW控制,遵循基因的分离定律定律。
本题考查基因分离定律及复等位基因的相关知识,要求考生根据表格信息判断显隐性关系。
7.【答案】A
【解析】AD、因为A1对A2为显性,A1对a为显性,A2对a为显性,则全抗植株与抗性植株有六种杂交情况:
A1A1与A2A2或者A2a杂交,后代全是全抗植株;
A1A2与A2A2或者A2a杂交,后代全抗:抗性=1:1;
A1a与A2A2杂交,后代全抗:抗性=1:1;
A1a与A2a杂交,后代全抗:抗性:易感=2:1:1。
A错误,D正确。
B、抗性与易感植株交配杂交,后代全为抗性,或者为抗性:易感=1:1,B正确。
C、全抗与易感植株杂交,如果是A1A1与aa杂交,则后代全为全抗;如果是A1A2与aa杂交,则后代为全抗:抗性=1:1;如果是A1a与aa杂交,则后代为全抗:易感=1:1。C正确。
故选A。
8.【答案】C
【解析】【分析】
由题干信息可知,AY对A、a为完全显性,A对a为完全显性,AYAY胚胎致死,因此小鼠的基因型及对应毛色表型有AYA(黄色)、AYa(黄色)、AA(鼠色)、Aa(鼠色)、aa(黑色),据此分析。
【解答】
A、若AYa个体与AYA个体杂交,由于基因型AYAY胚胎致死,则F1有AYA、AYa、Aa共3种基因型,A正确;
B、若AYa个体与Aa个体杂交,产生的F1的基因型及表型有AYA(黄色)、AYa(黄色)、Aa(鼠色)、aa(黑色),即有3种表型,B正确;
C、若1只黄色雄鼠(AYA或AYa)与若干只黑色雌鼠(aa)杂交,产生的F1的基因型为AYa(黄色)、Aa(鼠色),或AYa(黄色)、aa(黑色),则不会同时出现鼠色个体与黑色个体,C错误;
D、若1只黄色雄鼠(AYA或AYa)与若干只纯合鼠色雌鼠(AA)杂交,产生的F1的基因型为AYA(黄色)、AA(鼠色),或AYA(黄色)、Aa(鼠色),则F1可同时出现黄色个体与鼠色个体,D正确。
故选:C。
9.【答案】B
【解析】某玉米植株产生的配子种类及比例为YR:Yr:yR:yr=1:1:1:1,则该个体的基因型为YyRr。该个体的基因型为YyRr,其自交后代中基因型为YyRR个体所占的比例为。
故选:B。
10.【答案】B
【解析】用分离定律解决自由组合问题
(1)基因原理分离定律是自由组合定律的基础。
(2)解题思路首先将自由组合定律问题转化为若干个分离定律问题。在独立遗传的情况下,有几对基因就可以分解为几个分离定律问题。如AaBb×Aabb可分解为:Aa×Aa,Bb×bb。然后,按分离定律进行逐一分析。最后,将获得的结果进行综合,得到正确答案。
A、若De对Df共显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有DeDf、Ded、Dfd和dd四种,表型4种,毛发形状基因型有HH、Hh和hh三种,表型2种,则F1有4×2=8种表型,A错误;
B、若De对Df共显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有DeDf、Ded、Dfd和dd四种,表型4种,毛发形状基因型有HH、Hh和hh三种,表型3种,则F1有4×3=12种表型,B正确;
C、若De对Df不完全显性,H对h完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有DeDf、Ded、Dfd和dd四种,表型4种,毛发形状基因型有HH、Hh和hh三种,表型2种,则F1有4×2=8种表型,C错误;
D、若De对Df完全显性,H对h不完全显性,基因型为DedHh和DfdHh雌雄个体交配,毛发颜色基因型有则DeDf、Ded、Dfd和dd四种,表型3种,毛发形状基因型有HH、Hh和hh三种,表型3种,则F1有3×3=9种表型,D错误。
11.【答案】C
【解析】对AaBb的个体进行测交,即与aabb交配,则子代基因型及比例为A_B_:A_bb:aaB_:aabb=1:1:1:1,表现型及比例为紫花:白花=1:3,即紫花占比。
故选:C。
由题意可知,紫花的基因型为A_B_,白花的基因型为A_bb、aaB_和aabb。
本题考查基因的自由组合定律有关知识,要求学生理解基因的自由组合定律的实质,在准确分析题干信息的基础上运用所学知识和方法解决问题。
12.【答案】C
【解析】本题结合表格,考查基因自由组合定律的实质及应用、基因与性状的关系等知识,要求考生识记基因控制性状的方式,掌握基因自由组合定律的实质,能根据表格信息准确判断表现型与基因型的对应关系,再根据表格信息答题。
据表可知:甲×乙产生F1全是红色籽粒,F1自交产生F2中红色:白色=9:7,说明玉米籽粒颜色受两对等位基因控制,且两对等位基因遵循自由组合定律;甲×丙产生F1全是红色籽粒,F1自交产生F2中红色:白色=9:7,说明玉米籽粒颜色受两对等位基因控制,且两对等位基因遵循自由组合定律。综合分析可知,红色为显性,红色与白色可能至少由三对等位基因控制,假定用A/a、B/b、C/c,甲乙丙的基因型可分别为AAbbCC、aaBBCC、AABBcc。(只写出一种可能情况)。
A、若乙与丙杂交,F1全部为红色籽粒(AaBBCc),两对等位基因遵循自由组合定律,则F2玉米籽粒性状比为9红色:7白色,A正确;
B、据分析可知若乙与丙杂交,F1全部为红色籽粒,则玉米籽粒颜色可由三对基因控制,B正确;
C、据分析可知,组1中的F1(AaBbCC)与甲(AAbbCC)杂交,所产生玉米籽粒性状比为1红色:1白色,C错误;
D、组2中的F1(AABbCc)与丙(AABBcc)杂交,所产生玉米籽粒性状比为1红色:1白色,D正确。
故选:C。
13.【答案】D
【解析】A、F2中表型及其比例是高秆:矮秆:极矮秆=9:6:1,符合:9:3:3:1的变式,因此控制两个矮秆突变体的基因遵循基因的自由组合定律,即高秆基因型为A_B_,矮秆基因型为A_bb、aaB_,极矮秆基因型为aabb,因此可推知亲本的基因型为aaBB和AAbb,F1的基因型为AaBb,A正确;
B、矮秆基因型为A_bb、aaB_,因此F2矮秆的基因型有aaBB、AAbb、aaBb、Aabb,共4种,B正确;
C、由F2中表型及其比例可知基因型是AABB的个体为高秆,基因型是aabb的个体为极矮秆,C正确;
D、F2矮秆基因型为A_bb、aaB_共6份,纯合子基因型为aaBB、AAbb共2份,因此矮秆中纯合子所占比例为1/3,F2高秆基因型为A_B_共9份,纯合子为AABB共1份,因此高秆中纯合子所占比例为1/9,D错误。
故选D。
14.【答案】D
【解析】A、由实验①:宽叶矮茎植株自交,子代中宽叶矮茎∶窄叶矮茎=2∶1,推出亲本基因型为Aabb,子代中原本基因型为AAbb:Aabb:aabb=1:2:1,因此推测A纯合致死;由实验②:窄叶高茎植株自交,子代中窄叶高茎∶窄叶矮茎=2∶1,知亲本基因型为aaBb,子代原本基因型为aaBB:aaBb:aabb=1:2:1,因此推测B纯合致死。A正确。
B、实验①中亲本为宽叶矮茎,且后代出现性状分离,所以基因型为Aabb,子代中由于基因A纯合致死,因此宽叶矮茎的基因型也为Aabb,B正确。
C、由于基因A和B均纯合致死,因此若发现该种植物中的某个植株表现为宽叶高茎,则其基因型只能为AaBb ,C正确。
D、将宽叶高茎植株AaBb进行自交,由于基因A和B均纯合致死,子代原本表现型比例为9:3:3:1变为4:2:2:1,其中只有窄叶矮茎的植株为纯合子,所占比例为1/9,D错误。
故选D。
15.【答案】B
【解析】A、由题干可知等位基因A/a和B/b位于非同源染色体上,遵循基因的自由组合定律,a基因不育对B基因的致死率相等,B/b控制花色,红花对白花为显性,AaBb的亲本进行自交,子代红花(B_):白花(bb)=3:1,A正确。
B、AaBb产生的花粉(雄配子)类型及比例为:AB、Ab、aB、ab;雌配子类型及比例为:AB、Ab、aB、ab。子一代中基因型为aabb的个体所占比例是=,B错误。
C、AaBb两对等位基因位于非同源染色体上,符合基因的自由组合定律。Aa产生的花粉为A、a,但a的花粉50%可育、50%不育,所以产生的雄配子可育的有A,a、a不育,故亲本产生的可育雄配子数是不育雄配子数的3倍,C正确。
D、AaBb两对等位基因位于非同源染色体上,符合基因的自由组合定律,位于非同源染色体上的非等位基因的分离和组合是互不干扰的,所以亲本产生的含B的可育雄配子数与含b的可育雄配子数相等,D正确。
故选B。
由题干可知含A的花粉可育;含a的花粉50%可育、50%不育,基因型为AaBb的亲本,Aa产生的花粉为A、a,但a的花粉50%可育、50%不育,所以产生的花粉A占,a占。AaBb产生的花粉(雄配子)类型及比例为:AB、Ab、aB、ab;雌配子类型及比例为:AB、Ab、aB、ab。
本题考查考生基因自由组合定律的实质及应用,注意题干关键信息,来分析计算。
16.【答案】A
【解析】本题结合图解,以人类的ABO血型为素材,考查基因分离定律的实质及应用,要求考生掌握基因分离合定律的实质,能分析题干和图中信息,准确判断基因型与表型之间的对应关系,再结合所学的知识准确答题,属于考纲理解和应用层次的考查。
由题表可知,呈阳性反应的个体红细胞表面有相应抗原,如个体1的A抗原抗体呈阳性,B抗原抗体也呈阳性,说明其红细胞表面既有A抗原,又有B抗原,则个体1的基因型为IAIB。
A、个体5只含A抗原,个体6只含B抗原,而个体7既不含A抗原也不含B抗原,故个体5的基因型只能是IAi,个体6的基因型只能是IBi,A正确;
B、个体1既含A抗原又含B抗原,说明其基因型为IAIB。个体2只含A抗原,但个体5的基因型为IAi,所以个体2的基因型只能是IAi,B错误;
C、由表格分析可知,个体3只含B抗原,个体4既含A抗原又含B抗原,个体6的基因型只能是IBi,故个体3的基因型只能是IBi,个体4的基因型是IAIB,C错误;
D、个体5的基因型为IAi,个体6的基因型为IBi,故二者生的孩子基因型可能是IAi、IBi、IAIB、ii,D错误。
故选:A。
17.【答案】A
【解析】【分析】
分析题意可知:基因型为AABBcc个体表现为有成分R,又知无成分R的纯合子甲、乙、丙之间相互杂交,其中一组杂交的F1基因型为AaBbCc且无成分R,推测同时含有A、B基因才表现为有成分R,C基因的存在可能抑制A、B基因的表达,即基因型为A_B_cc的个体表现为有成分R,其余基因型均表现为无成分R。根据F1与甲杂交,后代有成分R:无成分R≈1:3,有成分R所占比例为,可以将分解为,则可推知甲的基因型可能为AAbbcc或aaBBcc;F1与乙杂交,后代有成分R:无成分R≈1:7,可以将分解为,则可推知乙的基因型为aabbcc;F1与丙杂交,后代均无成分R,可推知丙的基因型可能为AABBCC或AAbbCC或aaBBCC。
【解答】
杂交Ⅰ子代中有成分R植株基因型为AABbcc和AaBbcc,比例为1:1,或(基因型为AaBBcc和AaBbcc,比例为1:1,)杂交Ⅱ子代中有成分R植株基因型为AaBbcc,故杂交Ⅰ子代中有成分R植株与杂交Ⅱ子代中有成分R植株相互杂交,后代中有成分R所占比例为×1××1+×1=。
故选:A。
18.【答案】B
【解析】果蝇体细胞有4对同源染色体,每对同源染色体中一条来自父方,一条来自母方。F2某一雄果蝇体细胞中有4条染色体来自F1雄果蝇,这4条染色体包括3条常染色体和1条Y染色体,其中每条常染色体来自亲本(P)雄果蝇的概率均为,而性染色体Y一定来自亲本(P)雄果蝇,则这4条全部来自亲本(P)雄果蝇的概率为。
故选:B。
F2某一雄果蝇体细胞中有4条染色体来自F1雄果蝇,这4条染色体包括3条常染色体和1条Y染色体,其中每条常染色体来自亲本(P)雄果蝇的概率均为,而性染色体Y一定来自亲本(P)雄果蝇。
本题考查基因自由组合定律的实质及应用,要求考生识记基因自由组合定律的实质,明确性染色体Y一定来自亲本雄果蝇,再进行概率计算。
19.【答案】D
【解析】A、①(P)dd(雄性不育)作为母本和②(H)dd(雄性可育)作为父本杂交,产生的后代的基因型均为(P)dd,表现为雄性不育,A正确;
B、②③④自交后代均为雄性可育,且基因型不变,即表现为稳定遗传,B正确;
C、①(P)dd(雄性不育)作为母本和③(H)DD(雄性可育)作为父本杂交,产生的后代的基因型为(P)Dd,为杂交种,自交后代会表现出性状分离,因而需要年年制种,C正确;
D、①和③杂交后代的基因型为(P)Dd,②和③杂交后代的基因型为(H)Dd,若前者作父本,后者作母本,则二者杂交的后代为(H)_ _,均为雄性可育,不会出现雄性不育,D错误。
故选D。
20.【答案】(1). 人工去雄 防止外来花粉授粉
(2). 形成配子时,等位基因分离的同时,非同源染色体上的非等位基因自由组合
(3). 宽叶雌株:宽叶正常株=1:1 3/32
(4).
【解析】【分析】
分析题意可知,宽叶与窄叶亲本杂交,F1全为宽叶,所以宽叶对窄叶为显性。F1自交产生F2,F2的表现型及比例为:宽叶雌株:窄叶雌株:宽叶正常株:窄叶正常株=3:1:3:9,符合自由组合定律分离比,说明两对等位基因的遗传遵循基因自由组合定律。
【解答】
(1)与正常株相比,选用雄性不育株为母本进行杂交实验时操作更简便,由于雄性不育,所以不需进行人工去雄处理。授粉后需套袋的目的是防止外来花粉授粉。
(2)两对等位基因的遗传遵循基因自由组合定律,形成配子时,同源染色体上的等位基因分离的同时,非同源染色体上的非等位基因自由组合,所以F2会出现9:3:3:1的分离比。
(3)若取F2中纯合宽叶雌株AAtt与杂合窄叶正常株aaTt杂交,则其子代(F3)的表现型及比例为宽叶雌株Aatt:宽叶正常株AaTt =1:1,F3群体中雄配子种类及比例为:1/4AT、1/4At、1/4aT、1/4at,雌配子种类及比例为3/8At、3/8at、1/8At、1/8aT,所以F4中窄叶雌株aatt所占的比例为1/4×3/8=3/32。
(4)验证F1植株的基因型,用测交的方法,遗传图解为:
【点睛】解决本题的关键在于将题目中表现型的数量关系转换成考生们熟悉的比例关系,再联系所学的3:1和9:3:3:1的分离比或其变形去解题。
21.【答案】(1)橘红色
(2)AaBbEeFf 8
(3)8 9:3:4
【解析】【分析】
分析表格数据可知,控制果肉颜色的B、b基因位于9号染色体,控制果皮底色的A、a基因和控制果皮覆纹中的E、e基因均位于4号染色体,且A和E连锁,a和e连锁;控制果皮覆纹E、e和F、f的基因分别位于4和2号染色体上,两对基因独立遗传,且有覆纹基因型为E-F-,无覆纹基因型为E-ff、eeF-、eeff,据此分析作答。
解答本题的关键是明确三对性状与对应基因的关系,并能根据图表信息确定相关基因型,进而分析作答。
【解答】(1)结合表格分析可知,亲本分别是白色和橘红色杂交,F1均为橘红色,F1杂交,子代出现橘红色:白色=3:1的性状分离比,说明橘红色是显性性状。
(2)由于F2中黄绿色:黄色≈3:1,可推知F1应为Aa,橘红色:白色≈3:1,F1应为Bb,有覆纹:无覆纹≈9:7,则F1应为EeFf,故F1基因型应为AaBbEeFf;由于A和E连锁,a和e连锁,而F、f和B、b独立遗传,故F1产生的配子类型有2(AE、ae)×2(F、f)×2(B、b)=8种。
(3)结合表格可知,F2中关于果皮底色的表型有2种,关于果肉颜色的表型有2种,关于果皮覆纹的表型有2种,故F2的表型有2×2×2=8种;由于A和E连锁,a和e连锁。F2中基因型为A-E-的为,aaee的为,F2中黄绿色有覆纹果皮(A-E-F-)、黄绿色无覆纹果皮(A-E-ff)、黄色无覆纹果皮(aaeeF-、aaeeff)的植株数量比是(×):(×):(×+×)=9:3:4;F2中黄色无覆纹果皮中的纯合子占,橘红色果肉植株中纯合子为,纯合子所占比例为,故杂合子所占比例是1-=。
22.【答案】(1)F1中缺刻叶:全缘叶=1:1,齿皮:网皮=1:1 缺刻叶、齿皮
(2)甲、乙
(3)1/4
(4)果皮 后代缺刻叶:全缘叶=15:1,符合自由组合定律,齿皮:网皮=3:1,符合分离定律
【解析】【分析】
(1)本题主要考查基因自由组合定律应用有关知识,熟知基因自由组合定律的实质与应用是解答本题的关键,能根据表格信息进行合理的分析与应用是解答本题的关键,要求考生根据表中杂交组合呈现的“F1的表现型、F2的表现型及比例”为切入点,明辨相关基因所遵循的遗传定律,再依据题意明辨基因与性状的关系。在此基础上,推出相关基因型从而求解。
表格分析:假设甜瓜的叶形缺刻叶和全缘叶,果皮齿皮和网皮分别由等位基因A/a,B/b控制。由表中实验②的F2的性状表现为缺刻叶齿皮:缺刻叶网皮:全缘叶齿皮:全缘叶网皮=9:3:3:1,符合基因的自由组合定律,所以由该比例可知缺刻叶和齿皮是显性性状。又题干知其中甲和丙种植后均表现为缺刻叶网皮,则甲丙基因型可表示为A-bb,由此可判断丙的基因型为AAbb,在推断丁的基因型为aaBB,又有表中实验①的F1的性状表现为缺刻叶:全缘叶=1:1,齿皮:网皮=1:1,所以甲乙的基因型分别为Aabb、aaBb。
【解答】
(1)根据表格中实验①的F1的性状表现为缺刻叶:全缘叶=1:1,齿皮:网皮=1:1,可判断这2对相对性状的遗传均符合分离定律;实验②的F2的性状表现为缺刻叶齿皮:缺刻叶网皮:全缘叶齿皮:全缘叶网皮=9:3:3:1,符合基因的自由组合定律,所以由该比例可知缺刻叶和齿皮是显性性状。
(2)根据表中实验②的F2的性状分离比分析,可知叶形和果皮这两个性状符合自由组合定律,则实验②中的F1基因为双杂合子,基因型为AaBb,亲本丙丁均为纯合子,又题干知其中甲和丙种植后均表现为缺刻叶网皮,故丙的基因型为AAbb,丁的基因型为aaBB , 又实验①的F1的性状表现为缺刻叶:全缘叶=1:1,齿皮:网皮=1:1,所以甲乙的基因型分别为Aabb、aaBb。则甲乙丙丁中杂合子是甲乙。
(3)实验②的F2中纯合体有AABB,AAbb,aaBB,aabb,占1/4。
(4)若实验②的F2中缺刻叶齿皮:缺刻叶网皮:全缘叶齿皮:全缘叶网皮是45:15:3:1,则缺刻叶:全缘叶=15:1,符合基因的自由组合定律,齿皮:网皮=3:1,符合基因分离定律,故果皮性状由1对等位基因控制。
23.【答案】(1)紫色:红色:白色=3:3:2 AAbb、Aabb
(2)选用的亲本基因型:AAbb;预期实验结果及结论:若子代花色全为红花,则待测白花纯合个体的基因型为aabb;若子代花色全为紫花,则待测白花纯合个体基因型为aaBB
【解析】(1)基因型为AaBb的紫花植株与红花杂合体植株(基因型为Aabb)杂交,子代基因型及比例为A_Bb:A_bb:aaBb:aabb=(×):(×):(×):(×)=3:3:1:1,相应的表现型及比例为紫色:红色:白色=3:3:2;子代中红花植株的基因型为AAbb、Aabb;子代白花植株包括aaBb与aabb,二者比例为1:1,故子代白花植株中纯合体占的比例是。
(2)根据上述分析,白花纯合体的基因型有aaBB与aabb两种,要选用1种纯合亲本通过1次杂交实验来确定其基因型,关键思路是要判断该白花植株甲是否含有B基因,且不能选择白花亲本,否则后代全部为白花,无法判断,故而选择基因型为AAbb的红花纯合个体为亲本,与待测植株甲进行杂交。若待测白花纯合个体的基因型为aabb,则子代花色全为红花;若待测白花纯合个体基因型为aaBB,则子代花色全为紫花。
故答案为:
(1)紫色:红色:白色=3:3:2 AAbb、Aabb
(2)选用的亲本基因型:AAbb;预期实验结果及结论:若子代花色全为红花,则待测白花纯合个体的基因型为aabb;若子代花色全为紫花,则待测白花纯合个体基因型为aaBB
分析题干信息,可知相关基因型与表型的关系是:A_B_紫色、A_bb红色、aaB_白色、aabb白色。基因A和基因B位于非同源染色体上,遵循基因的自由组合定律。
本题考查学生对基因的自由组合定律的理解与应用,首先要分析题干明确有关基因型与表型的关系,再运用所学规律和方法分析具体问题,设计实验判断待测个体的基因型。
24.【答案】(1) 常 显
(2) YY、YG YW、GW
(3)50%或1/2
(4) 4 6
(5) 3∶1 50%或1/2
【解析】【分析】
正反交常用来判断基因的位置,若正反交的结果相同,则基因位于常染色体上,若正反交结果不同,其中一组的子代表型与性别有关,则基因位于性染色体上。
【详解】
(1)一对表现为相对性状的亲本杂交,子一代表现的性状为显性性状,深黄(P)♀×灰黑(P)♂,F1表现为深黄色,所以深黄色为显性性状。深黄(F1)♀×深黄(F1)♂,后代深黄∶灰黑≈3∶1,根据题意,反交实验结果与该正交实验结果相同,说明大蜡螟幼虫的深黄体色遗传属于常染色体上显性遗传。
(2)根据表1深黄(P)♀×灰黑(P)♂,F1表现为深黄色,可知亲本深黄为显性纯合子,基因型为YY,亲本灰黑的基因型为GG,则F1个体的基因型为YG,表2中深黄(P)♀×白黄(P)♂,子代只有黄色,可知深黄的基因型为YY,白黄的基因型为WW,子一代基因型为YW,表现为黄。表3中灰黑(P)♀×白黄(P)♂,子代只有黄色,则灰黑的基因型为GG,白黄的基因型为WW,故子一代基因型为GW。Y、G、W三个基因控制一种性状,因此位于一对同源染色体上。
(3)表2中黄色个体的基因型为YW,表3中黄色个体的基因型为GW,若从表2中选取黄色雌、雄个体各50只和表3中选取黄色雌、雄个体各50只进行随机杂交,即YW×GW,则后代基因型及比例为YG∶YW∶GW∶WW=1∶1∶1∶1,黄色个体(YW+GW)占1/2。
(4)表1深黄色基因型为YY和YG,表2中黄色个体的基因型为YW,表3中黄色的基因型为GW,表1、表2、表3中深黄和黄色个体随机杂交,即YY、YG、YW和GW随机杂交,则该群体产生的配子类型为Y、G、W,子代YY、YG表现为深黄色,YW、GW表现为黄色,GG表现为灰黑色,WW表现为白黄色,故后代会出现4种表型和6种基因型。
(5)表1的子一代基因型为YG,若两亲本的另一对同源染色体上存在纯合致死基因S和D(两者不发生交换重组),基因的排列方式为, 则子一代基因型为YGDS,互交后代基因型为Y_DD(3/4×1/4)、Y_DS(3/4×1/2)、Y_SS(3/4×1/4),GGDD(1/4×1/4)、GGDS(1/4×1/2)、GGSS(1/4×1/4),根据DD、SS纯合致死,所以F2深黄与灰黑的比例为3∶1,由于DS占1/2,所以在同样的条件下,子代的数量理论上是表1中的1/2。
25.【答案】(1)DNA分子中碱基对的增添、缺失或替换,从而导致基因结构发生改变
(2)实验①和实验②的F1性状不同,F2的性状分离比不相同
(3)AABB、aabb aaBB和aaBb 3/13
【解析】(1)基因突变的定义就是DNA分子中发生碱基的替换、增添或缺失而引起的基因碱基序列的改变,叫做基因突变。
(2)甲与丙杂交的F1为不成熟,子二代不成熟:成熟=3:1,所以甲的不成熟相对于成熟为显性;乙与丙杂交的F1为成熟,子二代成熟:不成熟=3:1,所以乙的不成熟相对于成熟为隐性。
(3)由(2)分析可知,甲的不成熟相对为显性,因为丙为aaBB,所以甲是AABB;乙的不成熟相对为隐性,所以乙为aabb。则实验③的F1为AaBb, F2中成熟个体为aaB_,包括aaBB和aaBb,不成熟个体占的比例为1-(1/4)×(3/4)=13/16;而纯合子为AABB、AAbb、aabb,占3/16,所以不成熟中的纯合子占3/13。
26.【答案】(1)①一 显
②A1对A2显性,A2对A3显性
(2)①雄性不育 A2A3:A3A3=1:1
②A1A1
③母本中育性正常个体自交后代为纯合子,产量低于杂合子,故除去育性正常的个体
(3)将E基因插入到A2基因所在的染色体上,使其紧密连锁,则表现E基因性状的个体为不育,不表现E基因性状的个体为可育
【解析】【解答】
(1)①分析遗传图解,由杂交一结果推测,育性正常与雄性不育性状受一对等位基因控制。在杂交二中,雄性不育为显性性状。
②杂交一与杂交二的F1表现型不同的原因是育性性状由位于同源染色体相同位置上的3个基因(A1、A2、A3)决定。品系1、雄性不育株、品系3的基因型分别为
A1A1、A2A2、A3A3.根据杂交一、二的结果,判断A1、A2、A3之间的显隐性关系是A1对A2显性,A2对A3显性。
(2)①经过图中虚线框内的杂交后,可将品系3的优良性状与雄性不育性状整合在同一植株上,该植株所结种子的基因型及比例为A2A3:A3A3=1:1。
②将上述种子种成母本行,将基因型为A1A1的品系1种成父本行,用于制备YF1。
③为制备YF1,油菜刚开花时应拔除母本行中具有某一育性性状的植株。否则,得到的种子给农户种植后,会导致油菜籽减产,其原因是母本中育性正常个体自交后代为纯合子,产量低于杂合子,故除去育性正常的个体。
(3)上述辨别并拔除特定植株的操作只能在油菜刚开花时(散粉前)完成,供操作的时间短,还有因辨别失误而漏拔的可能。有人设想:“利用某一直观的相对性状在油菜开花前推断植株的育性”,利用控制该性状的等位基因(E、e)及其与A基因在染色体上的位置关系展示这一设想的思路是:将E基因插入到A2基因所在的染色体上,使其紧密连锁,则表现E基因性状的个体为不育,不表现E基因性状的个体为可育。
故答案为:(1)①一 显
②A1对A2显性,A2对A3显性
(2)①雄性不育 A2A3:A3A3=1:1
②A1A1
③母本中育性正常个体自交后代为纯合子,产量低于杂合子,故除去育性正常的个体
(3)将E基因插入到A2基因所在的染色体上,使其紧密连锁,则表现E基因性状的个体为不育,不表现E基因性状的个体为可育
分析遗传图解:杂交一中,雄性不育植株与品系1杂交,F1全部可育,F1自交F2育性正常:雄性不育=3:1,说明育性正常与雄性不育性状受一对等位基因控制;
杂交二中,由于雄性不育植株与品系3逐代杂交始终出现雄性不育性状的植株,所以雄性不育为显性性状。
【分析】
本题以雄性不育育种为载体,主要考查生物变异的应用等相关知识,重点是掌握分析遗传图解的方法,理解遗传定律的内容,灵活运用遗传定律解决农业生产中的问题。
27.【答案】(1)甲;雌雄同株
(2)是; AAtsts;抗螟雌雄同株:抗螟雌株=1:1
(3)不位于;抗螟性状与性别性状间是自由组合的,因此A基因不位于Ts、ts基因所在的2号染色体上;含A基因的雄配子不育; ;
【解析】【分析】
本题结合表格,主要考查基因分离定律和自由组合定律,要求学生掌握基因分离定律和自由组合定律的实质和常见的分离比,能够根据题意和实验结果分析相关个体的基因型及其比例,充分利用题干中的条件和比例推导导致后代比例异常的原因,能够利用配子法计算相关个体的比例,属于考纲理解和应用层次的考查。
根据题意可知,基因Ts存在时表现为雌雄同株,当基因突变为ts后表现为雌株,玉米雌雄同株M的基因型为TsTs,则实验中品系M作为父本,品系甲和乙的基因型为tsts,则作为母本。由于基因A只有一个插入到玉米植株中,因此该玉米相当于杂合子,可以看做为AO,没有插入基因A的植株基因型看做为OO,则分析实验如下:
实验一:品系M(OOTsTs)×甲(AOtsts)→F1AOTsts抗螟雌雄同株1:OOTsts非抗螟雌雄同株1;让F1AOTsts抗螟雌雄同株自交,若基因A插入到ts所在的一条染色体上,则F1AOTsts抗螟雌雄同株产生的配子为Ats、OTs,那么后代为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,该假设与题意相符合,因此说明实验一中基因A与基因ts插入到同一条染色体上。
实验二:品系M(OOTsTs)×乙(AOtsts)→F1AOTsts抗螟雌雄同株矮株1:OOTsts非抗螟雌雄同株正常株高1,选取F1AOTsts抗螟雌雄同株矮株自交,F2中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=1:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,说明基因A与基因ts没有插入到同一条染色体上,则基因A与基因ts位于非同源染色体上,符合基因自由组合定律,其中雌雄同株:雌株=3:1,但F2中抗螟:非抗螟=1:1不符合理论结果3:1,说明有致死情况出现。
【解答】
(1)根据题意和实验结果可知,实验一中玉米雌雄同株M的基因型为TsTs,为雌雄同株,而甲品系的基因型为tsts,为雌株,只能做母本,根据以上分析可知,实验二中F1的OOTsts非抗螟植株基因型为OOTsts,因此为雌雄同株。
(2)根据以上分析可知,实验一的F1AOTsts抗螟雌雄同株自交,后代F2为1AAtsts抗螟雌株:2AOTsts抗螟雌雄同株:1OOTsTs非抗螟雌雄同株,符合基因分离定律的结果,说明实验一中基因A与基因ts插入到同一条染色体上,后代中抗螟雌株的基因型为AAtsts,将F2中AAtsts抗螟雌株与AOTsts抗螟雌雄同株进行杂交,AAtsts抗螟雌株只产生一种配子Ats,AOTsts抗螟雌雄同株作为父本产生两种配子,即Ats、OTs,则后代为AAtsts抗螟雌株:AOTsts抗螟雌雄同株=1:1。
(3)根据以上分析可知,实验二中选取F1AOTsts抗螟雌雄同株矮株自交,后代中出现抗螟雌雄同株:抗螟雌株:非抗螟雌雄同株:非抗螟雌株=3:1:3:1,其中雌雄同株:雌株=1:1,抗螟:非抗螟=1:1,说明抗螟性状与性别之间发生了自由组合现象,故乙中基因A不位于基因ts的2号染色体上,且F2中抗螟矮株所占比例小于理论值,说明A基因除导致植株矮小外,还影响了F1的繁殖,根据实验结果可知,在实验二的F1中,后代AOTsts抗螟雌雄同株矮株:OOTsts非抗螟雌雄同株正常株高=1:1,则说明含A基因的卵细胞发育正常,而F2中抗螟矮株所占比例小于理论值,故推测最可能是F1产生的含基因A的雄配子不育导致后代中雄配子只产生了OTs和Ots两种,才导致F2中抗螟矮株所占比例小于理论值的现象。根据以上分析可知,实验二的F2中雌雄同株:雌株=3:1,故F2中抗螟矮植株中ts的基因频率不变,仍然为;根据以上分析可知,F2中抗螟矮株的基因型雌雄同株为AOTsTs、AOTsts,雌株基因型为AOtsts,由于F1含基因A的雄配子不育,则AOTsTs、AOTsts产生的雄配子为OTs、Ots,AOtsts产生的雌配子为Ats、Ots,故雌株上收获的籽粒发育成的后代中抗螟矮植株雌株AOtsts所占比例为。
故答案为:
(1)甲 雌雄同株
(2)是 AAtsts 抗螟雌雄同株:抗螟雌株=1:1
(3)不位于 抗螟性状与性别性状间是自由组合的,因此A基因不位于Ts、ts基因所在的2号染色体上 含A基因的雄配子不育
28.【答案】(1)12
(2)Ⅲ 1∶2∶1
(3)(基因)分离 SD
(4)将L7和L12杂交,获得F1后自交 α和Ⅲ
(5) 1/80
【解析】分析题意和条带可知:L12的12号染色体上含有耐缺氮基因TD,其基因型为TDTD;L7的7号染色体上含有基因SD,基因型为SDSD;H的12号染色体上的基因为TH,7号染色体上的基因为SH,基因型为SHSHTHTH;TD与TH,SD与SH遵循基因分离和自由组合定律。
(1)水稻为雌雄同株的植物,没有性染色体和常染色体之分,分析题图可知,水稻含有12对同源染色体,即有24条染色体,故对水稻基因组测序,需要完成12条染色体的DNA测序;
(2)实验一是将L12(基因型TDTD)与H(基因型THTH)杂交,F1的基因型为TDTH,F2的基因型分别为TDTD∶TDTH∶THTH=1∶2∶1,其中TDTD对应的是带型与亲本L12对应的条带相同,即条带Ⅲ,理论上,F2中产生带型Ⅰ∶Ⅱ∶Ⅲ的个体数量比为1∶2∶1;
(3)实验二是将L7(基因型SDSD)与H(基因型SHSH)杂交,F1的基因型为SDSH,理论上F2的基因型分别为SDSD∶SDSH∶SHSH=1∶2∶1,其中SDSD对应的是带型与亲本L7对应的条带相同,即条带α,SDSH对应条带为β,SHSH对应条带为γ,理论上,F2中产生带型Ⅰ∶Ⅱ∶Ⅲ的个体数量比为1∶2∶1。实际上F2中产生带型α、β、γ的个体数量分别为12、120和108,表明F2群体的基因型比例偏离分离定律;进一步研究发现,F1的雌配子均正常,但部分花粉无活性;已知只有一种基因型的花粉异常,而带型α,即SDSD的个体数量很少,可推测无活性的花粉带有SD基因;
(4)已知TD与TH,SD与SH两对基因分别位于7号和12号染色体上,两对等位基因遵循自由组合定律,以L7和L12为材料,选育同时带有来自D的7号和12号染色体片段的纯合品系X,基因型为SDSDTDTD;同时考虑两对等位基因,可知L7的基因型为SDSDTHTH,L12的基因型为SHSHTDTD,①将L7和L12杂交,获得F1(SDSHTDTH)后自交,②对最终获得的所有植株进行分子检测,同时具有带型α和Ⅲ的植株即为目的植株;
(5)实验二中SDSD∶SDSH∶SHSH=12∶120∶108=1∶10∶9,可知花粉中SD∶SH=1∶9,利用X(基因型为SDSDTDTD)和H(基因型为SHSHTHTH)杂交得到F1,基因型为SDSHTDTH,若F1产生的SD花粉无活性,所占比例与实验二结果相同,即雄配子类型及比例为:SDTD∶SDTH∶SHTD∶SHTH=1∶1∶9∶9,雌配子均有活性,类型及比例为SDTD∶SDTH∶SHTD∶SHTH =1∶1∶1∶1,则F2中基因型为SDSDTDTD的个体所占比例为1/4×1/20=1/80。
第1页,共1页