新课标高中数学测试题组(选修2)含答案

文档属性

名称 新课标高中数学测试题组(选修2)含答案
格式 rar
文件大小 2.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2008-01-17 21:17:00

文档简介

特别说明:
《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],
[综合训练B组],
[提高训练C组]
建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
本套资料酌收复印工本费。
李传牛老师保留本作品的著作权,未经许可不得翻印!
联络方式:(移动电话)13976611338,69626930 李老师。
(电子邮件)lcn111@sohu.com
目录:数学选修2-1
第一章 常用逻辑用语 [基础训练A组]
第一章 常用逻辑用语 [综合训练B组]
第一章 常用逻辑用语 [提高训练C组]
第二章 圆锥曲线 [基础训练A组]
第二章 圆锥曲线 [综合训练B组]
第二章 圆锥曲线 [提高训练C组]
第三章 空间向量与立体几何 [基础训练A组]
第三章 空间向量与立体几何 解答题精选

(本份资料工本费:5.00元)
新课程高中数学训练题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
辅导咨询电话:13976611338,李老师。
(数学选修2-1)第一章 常用逻辑用语
[基础训练A组]
一、选择题
1.下列语句中是命题的是( )
A.周期函数的和是周期函数吗? B.
C. D.梯形是不是平面图形呢?
2.在命题“若抛物线的开口向下,则”的
逆命题、否命题、逆否命题中结论成立的是( )
A.都真 B.都假 C.否命题真 D.逆否命题真
3.有下述说法:①是的充要条件. ②是的充要条件.
③是的充要条件.则其中正确的说法有( )
A.个 B.个 C.个 D.个
4.下列说法中正确的是( )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.“”与“ ”不等价
C.“,则全为”的逆否命题是“若全不为, 则”
D.一个命题的否命题为真,则它的逆命题一定为真
5.若, 的二次方程的一个根大于零,
另一根小于零,则是的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.已知条件,条件,则是的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题
1.命题:“若不为零,则都不为零”的逆否命题是 。
2.是方程的两实数根;,
则是的 条件。
3.用“充分、必要、充要”填空:
①为真命题是为真命题的_____________________条件;
②为假命题是为真命题的_____________________条件;
③, , 则是的___________条件。
4.命题“不成立”是真命题,则实数的取值范围是_______。
5.“”是“有且仅有整数解”的__________条件。
三、解答题
1.对于下述命题,写出“”形式的命题,并判断“”与“”的真假:
(其中全集,,).
有一个素数是偶数;.
任意正整数都是质数或合数;
三角形有且仅有一个外接圆.
2.已知命题若非是的充分不必要条件,求的取值范围。
3.若,求证:不可能都是奇数。
4.求证:关于的一元二次不等式对于一切实数都成立的充要条件是
新课程高中数学测试题组(13976611338)
(数学选修2-1)第一章 常用逻辑用语
[综合训练B组]
一、选择题
1.若命题“”为假,且“”为假,则( )
A.或为假 B.假
C.真 D.不能判断的真假
2.下列命题中的真命题是( )
A.是有理数 B.是实数
C.是有理数 D.
3.有下列四个命题:
①“若 , 则互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若 ,则有实根”的逆否命题;
④“不等边三角形的三个内角相等”逆命题;
其中真命题为( )
A.①② B.②③
C.①③ D.③④
4.设,则是 的( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
5.命题:“若,则”的逆否命题是( )
若,则
若,则
若,则
若,则
6.若,使成立的一个充分不必要条件是(??? )
A. B. C.?D.
二、填空题
1.有下列四个命题:
①、命题“若,则,互为倒数”的逆命题;
②、命题“面积相等的三角形全等”的否命题;
③、命题“若,则有实根”的逆否命题;
④、命题“若,则”的逆否命题。
其中是真命题的是 (填上你认为正确的命题的序号)。
2.已知都是的必要条件,是的充分条件,是的充分条件,
则是的 ______条件,是的 条件,是的 条件.
3.“△中,若,则都是锐角”的否命题为 ;
4.已知、是不同的两个平面,直线,命题无公共点;
命题, 则的 条件。
5.若“或”是假命题,则的范围是___________。
三、解答题
1.判断下列命题的真假:
(1)已知若
(2)
(3)若则方程无实数根。
(4)存在一个三角形没有外接圆。
2.已知命题且“”与“非”同时为假命题,求的值。
3.已知方程,求使方程有两个大于的实数根的充要条件。
4.已知下列三个方程:至少有一个方程有实数根,求实数的取值范围。
新课程高中数学测试题组(13976611338)
(数学选修2-1)第一章 常用逻辑用语
[提高训练C组]
一、选择题
1.有下列命题:①年月日是国庆节,又是中秋节;②的倍数一定是的倍数;
③梯形不是矩形;④方程的解。其中使用逻辑联结词的命题有( )
A.个 B.个 C.个 D.个
2.设原命题:若,则 中至少有一个不小于,则原命题与其逆命题
的真假情况是( )
A.原命题真,逆命题假 B.原命题假,逆命题真
C.原命题与逆命题均为真命题 D.原命题与逆命题均为假命题
3.在△中,“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是( )
A. B. C. D.
5.设集合,那么“,或”是“”的( )

A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
6.命题若,则是的充分而不必要条件;
命题函数的定义域是,则( )
A.“或”为假 B.“且”为真
C.真假 D.假真
二、填空题
1.命题“若△不是等腰三角形,则它的任何两个内角不相等”的逆否命题 是 ;
2.用充分、必要条件填空:①是的
②是的
3.下列四个命题中
①“”是“函数的最小正周期为”的充要条件;
②“”是“直线与直线相互垂直”的充要条件;
③ 函数的最小值为
其中假命题的为 (将你认为是假命题的序号都填上)
4.已知,则是的__________条件。
5.若关于的方程.有一正一负两实数根,
则实数的取值范围________________。
三、解答题
1.写出下列命题的“”命题:
(1)正方形的四边相等。
(2)平方和为的两个实数都为。
(3)若是锐角三角形, 则的任何一个内角是锐角。
(4)若,则中至少有一个为。
(5)若。
2.已知; 若是的必要非充分条件,求实数的取值范围。
3.设,
求证:不同时大于.
4.命题方程有两个不等的正实数根,
命题方程无实数根。若“或”为真命题,求的取值范围。
新课程高中数学训练题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
辅导咨询电话:13976611338,李老师。
(数学选修2-1)第二章 圆锥曲线
[基础训练A组]
一、选择题
已知椭圆上的一点到椭圆一个焦点的距离为,
则到另一焦点距离为( )
A. B. C. D.
2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的方程为( )
A. B.
C.或 D.以上都不对
3.动点到点及点的距离之差为,则点的轨迹是( )
A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线
4.设双曲线的半焦距为,两条准线间的距离为,且,
那么双曲线的离心率等于( )
A. B. C. D.
5.抛物线的焦点到准线的距离是( )
A. B. C. D.
6.若抛物线上一点到其焦点的距离为,则点的坐标为( )。
A. B. C. D.
二、填空题
1.若椭圆的离心率为,则它的长半轴长为_______________.
2.双曲线的渐近线方程为,焦距为,这双曲线的方程为_______________。
3.若曲线表示双曲线,则的取值范围是 。
4.抛物线的准线方程为_____.
5.椭圆的一个焦点是,那么 。
三、解答题
1.为何值时,直线和曲线有两个公共点?有一个公共点?
没有公共点?
2.在抛物线上求一点,使这点到直线的距离最短。
3.双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
4.若动点在曲线上变化,则的最大值为多少?
(数学选修2-1)第二章 圆锥曲线
[综合训练B组]
一、选择题
1.如果表示焦点在轴上的椭圆,那么实数的取值范围是( )
A. B. C. D.
2.以椭圆的顶点为顶点,离心率为的双曲线方程( )
A. B.
C.或 D.以上都不对
3.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,
则双曲线的离心率等于( )
A. B. C. D.
4. 是椭圆的两个焦点,为椭圆上一点,且∠,则
Δ的面积为( )
A. B. C. D.
5.以坐标轴为对称轴,以原点为顶点且过圆的圆心的抛物线的方程是( )
A.或 B.
C.或 D.或
6.设为过抛物线的焦点的弦,则的最小值为( )
A. B. C. D.无法确定
二、填空题
1.椭圆的离心率为,则的值为______________。
2.双曲线的一个焦点为,则的值为______________。
3.若直线与抛物线交于、两点,则线段的中点坐标是______。
4.对于抛物线上任意一点,点都满足,则的取值范围是____。
5.若双曲线的渐近线方程为,则双曲线的焦点坐标是_________.
6.设是椭圆的不垂直于对称轴的弦,为的中点,为坐标原点,
则____________。
三、解答题
1.已知定点,是椭圆的右焦点,在椭圆上求一点,
使取得最小值。
2.代表实数,讨论方程所表示的曲线
3.双曲线与椭圆有相同焦点,且经过点,求其方程。
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,
求抛物线的方程。
新课程高中数学测试题组(咨询13976611338)
(数学选修2-1)第二章 圆锥曲线
[提高训练C组]
一、选择题
1.若抛物线上一点到准线的距离等于它到顶点的距离,则点的坐标为( )
A. B. C. D.
2.椭圆上一点与椭圆的两个焦点、的连线互相垂直,
则△的面积为( )
A. B. C. D.
3.若点的坐标为,是抛物线的焦点,点在
抛物线上移动时,使取得最小值的的坐标为( )
A. B. C. D.
4.与椭圆共焦点且过点的双曲线方程是( )
A. B. C. D.
5.若直线与双曲线的右支交于不同的两点,
那么的取值范围是( )
A.() B.() C.() D.()
6.抛物线上两点、关于直线对称,
且,则等于( )
A. B. C. D.
二、填空题
1.椭圆的焦点、,点为其上的动点,当∠为钝角时,点横坐标的取值范围是 。
2.双曲线的一条渐近线与直线垂直,则这双曲线的离心率为___。
3.若直线与抛物线交于、两点,若线段的中点的横坐标是,则______。
4.若直线与双曲线始终有公共点,则取值范围是 。
5.已知,抛物线上的点到直线的最段距离为__________。
三、解答题
1.当变化时,曲线怎样变化?
2.设是双曲线的两个焦点,点在双曲线上,且,
求△的面积。
3.已知椭圆,、是椭圆上的两点,线段的垂直
平分线与轴相交于点.证明:
4.已知椭圆,试确定的值,使得在此椭圆上存在不同
两点关于直线对称。
新课程高中数学测试题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
辅导咨询电话:13976611338,李老师。
(数学选修2-1) 第三章 空间向量与立体几何
[基础训练A组]
一、选择题
1.下列各组向量中不平行的是( )
A. B.
C. D.
2.已知点,则点关于轴对称的点的坐标为( )
A. B. C. D.
3.若向量,且与的夹角余弦为,则等于( )
A. B.
C.或 D.或
4.若A,B,C,则△ABC的形状是( )
A.不等边锐角三角形 B.直角三角形
C.钝角三角形 D.等边三角形
5.若A,B,当取最小值时,的值等于( )
A. B. C. D.
6.空间四边形中,,,
则<>的值是( )
A. B. C.- D.
二、填空题
1.若向量,则__________________。
2.若向量,则这两个向量的位置关系是___________。
3.已知向量,若,则______;若则______。
4.已知向量若则实数______,_______。
5.若,且,则与的夹角为____________。
6.若,,是平面内的三点,设平面的法向量,则________________。
7.已知空间四边形,点分别为的中点,且,用,,表示,则=_______________。
8.已知正方体的棱长是,则直线与间的距离为 。
空间向量与立体几何解答题精选(选修2--1)
1.已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角;
(Ⅲ)求面与面所成二面角的大小。
证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为
.
(Ⅰ)证明:因
由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面.
(Ⅱ)解:因
(Ⅲ)解:在上取一点,则存在使
要使

所求二面角的平面角.
2.如图,在四棱锥中,底面是正方形,侧面是正三角形,
平面底面.
(Ⅰ)证明:平面;
(Ⅱ)求面与面所成的二面角的大小.
证明:以为坐标原点,建立如图所示的坐标图系.
(Ⅰ)证明:不防设作,
则, ,
由得,又,因而与平面内两条相交直线,都垂直. ∴平面.
(Ⅱ)解:设为中点,则,

因此,是所求二面角的平面角,
解得所求二面角的大小为
3.如图,在四棱锥中,底面为矩形,
侧棱底面,,,,
为的中点.
(Ⅰ)求直线与所成角的余弦值;
(Ⅱ)在侧面内找一点,使面,
并求出点到和的距离.
解:(Ⅰ)建立如图所示的空间直角坐标系,
则的坐标为、
、、、
、,
从而
设的夹角为,则
∴与所成角的余弦值为.
(Ⅱ)由于点在侧面内,故可设点坐标为,则
,由面可得,

即点的坐标为,从而点到和的距离分别为.
4.如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中
.
(Ⅰ)求的长;
(Ⅱ)求点到平面的距离.
解:(I)建立如图所示的空间直角坐标系,则,
设.
∵为平行四边形,
(II)设为平面的法向量,
的夹角为,则
∴到平面的距离为
5.如图,在长方体,中,,点在棱上移动.(1)证明:;
(2)当为的中点时,求点到面的距离;
(3)等于何值时,二面角的大小为.
解:以为坐标原点,直线分别为轴,建立空间直角坐标系,设,则
(1)
(2)因为为的中点,则,从而,
,设平面的法向量为,则
也即,得,从而,所以点到平面的距离为
(3)设平面的法向量,∴
由 令,

依题意
∴(不合,舍去), .
∴时,二面角的大小为.
6.如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:
(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的平面角的正切值.
解:(I)以为原点,、分别为轴建立空间直角坐标系.
由于,
在三棱柱中有
,


又侧面,故. 因此是异面直线的公垂线,
则,故异面直线的距离为.
(II)由已知有故二面角的平面角的大小为向量的夹角.
7.如图,在四棱锥中,底面为矩形,底面,是上
一点,. 已知
求(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的大小.
解:(Ⅰ)以为原点,、、分别为
轴建立空间直角坐标系.
由已知可得

由,
即 由,
又,故是异面直线与的公垂线,易得,故异面直线
,的距离为.
(Ⅱ)作,可设.由得
即作于,设,

由,
又由在上得
因故的平面角的大小为向量的夹角.
故 即二面角的大小为
新课程高中数学训练题组参考答案(13976611338)
(数学选修2-1) 第一章 常用逻辑用语 [基础训练A组]
一、选择题
1.B 可以判断真假的陈述句
2.D 原命题是真命题,所以逆否命题也为真命题
3.A ①,仅仅是充分条件
② ,仅仅是充分条件;③,仅仅是充分条件
4.D 否命题和逆命题是互为逆否命题,有着一致的真假性
5.A ,充分,反之不行
6.A ,
,充分不必要条件
二、填空题
1.若至少有一个为零,则为零
2.充分条件
3.必要条件;充分条件;充分条件,
4. 恒成立,当时,成立;当时,
得;
5.必要条件 左到右来看:“过不去”,但是“回得来”
三、解答题
1.解:(1) ;真,假;
(2) 每一个素数都不是偶数;真,假;
(3) 存在一个正整数不是质数且不是合数;假,真;
(4) 存在一个三角形有两个以上的外接圆或没有外接圆。
2.解:

而,即。
3.证明:假设都是奇数,则都是奇数
得为偶数,而为奇数,即,与矛盾
所以假设不成立,原命题成立
4.证明:恒成立

(数学选修2-1) 第一章 常用逻辑用语 [综合训练B组]
一、选择题
1.B “”为假,则为真,而(且)为假,得为假
2.B 属于无理数指数幂,结果是个实数;和都是无理数;
3.C 若 , 则互为相反数,为真命题,则逆否命题也为真;
“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等相等” 为假命题;
若 即,则有实根,为真命题
4.A ,“过得去”;但是“回不来”,即充分条件
5.D 的否定为至少有一个不为
6.D 当时,都满足选项,但是不能得出
当时,都满足选项,但是不能得出
二、填空题
1.①,②,③ ,应该得出
2.充要,充要,必要
3.若,则不都是锐角 条件和结论都否定
4.必要 从到,过不去,回得来
5. 和都是假命题,则
三、解答题
1.解:(1)为假命题,反例:
(2)为假命题,反例:不成立
(3)为真命题,因为无实数根
(4)为假命题,因为每个三角形都有唯一的外接圆。
2.解:非为假命题,则为真命题;为假命题,则为假命题,即
,得

3.解:令,方程有两个大于的实数根

所以其充要条件为
4.解:假设三个方程:都没有实数根,则 ,即 ,得

(数学选修2-1) 第一章 常用逻辑用语 [提高训练C组]
一、选择题
1.C ①中有“且”;②中没有;③中有“非”;④ 中有“或”
2.A 因为原命题若,则 中至少有一个不小于的逆否命题为,若都小于,则显然为真,所以原命题为真;原命题若,则 中至少有一个不小于的逆命题为,若 中至少有一个不小于,则,是假命题,反例为
3.B 当时,,所以“过不去”;但是在△中,
,即“回得来”
4.B 一次函数的图象同时经过第一、三、四象限
,但是不能推导回来
5.A “,或”不能推出“”,反之可以
6.D 当时,从不能推出,所以假,显然为真
二、填空题
1.若△的两个内角相等,则它是等腰三角形
2.既不充分也不必要,必要 ①若,
②不能推出的反例为若,
的证明可以通过证明其逆否命题
3.①,②,③ ①“”可以推出“函数的最小正周期为”
但是函数的最小正周期为,即
② “”不能推出“直线与直线相互垂直”
反之垂直推出;③ 函数的最小值为

4.充要
5.
三、解答题
1.解(1)存在一个正方形的四边不相等;(2)平方和为的两个实数不都为;
(3)若是锐角三角形, 则的某个内角不是锐角。
(4)若,则中都不为;
(5)若。
2.解:
是的必要非充分条件,,即。
3.证明:假设都大于,即
,而

即,属于自相矛盾,所以假设不成立,原命题成立。
4.解:“或”为真命题,则为真命题,或为真命题,或和都是真命题
当为真命题时,则,得;
当为真命题时,则
当和都是真命题时,得
(数学选修2-1) 第二章 圆锥曲线 [基础训练A组]
一、选择题
1.D 点到椭圆的两个焦点的距离之和为
2.C
得,或
3.D ,在线段的延长线上
4.C
5.B ,而焦点到准线的距离是
6.C 点到其焦点的距离等于点到其准线的距离,得
二、填空题
1. 当时,;
当时,
2. 设双曲线的方程为,焦距
当时,;
当时,
3.
4.
5. 焦点在轴上,则
三、解答题
1.解:由,得,即

当,即时,直线和曲线有两个公共点;
当,即时,直线和曲线有一个公共点;
当,即时,直线和曲线没有公共点。
2.解:设点,距离为,
当时,取得最小值,此时为所求的点。
3.解:由共同的焦点,可设椭圆方程为;
双曲线方程为,点在椭圆上,
双曲线的过点的渐近线为,即
所以椭圆方程为;双曲线方程为
4.解:设点,
令,,对称轴
当时,;当时,

(数学选修2-1) 第二章 圆锥曲线 [综合训练B组]
一、选择题
1.D 焦点在轴上,则
2.C 当顶点为时,;
当顶点为时,
3.C Δ是等腰直角三角形,
4.C

5.D 圆心为,设;

6.C 垂直于对称轴的通径时最短,即当
二、填空题
1. 当时,;
当时,
2. 焦点在轴上,则
3.
中点坐标为
4. 设,由得
恒成立,则
5. 渐近线方程为,得,且焦点在轴上
6. 设,则中点,得
,,
得即
三、解答题
1.解:显然椭圆的,记点到右准线的距离为
则,即
当同时在垂直于右准线的一条直线上时,取得最小值,
此时,代入到得
而点在第一象限,
2.解:当时,曲线为焦点在轴的双曲线;
当时,曲线为两条平行的垂直于轴的直线;
当时,曲线为焦点在轴的椭圆;
当时,曲线为一个圆;
当时,曲线为焦点在轴的椭圆。
3.解:椭圆的焦点为,设双曲线方程为
过点,则,得,而,
,双曲线方程为。
4.解:设抛物线的方程为,则消去得


(数学选修2-1) 第二章 圆锥曲线 [提高训练C组]
一、选择题
1.B 点到准线的距离即点到焦点的距离,得,过点所作的高也是中线
,代入到得,
2.D ,相减得

3.D 可以看做是点到准线的距离,当点运动到和点一样高时,取得最小值,即,代入得
4.A 且焦点在轴上,可设双曲线方程为过点

5.D 有两个不同的正根
则得
6.A ,且
在直线上,即

二、填空题
1. 可以证明且
而,则

2. 渐近线为,其中一条与与直线垂直,得

3.
得,当时,有两个相等的实数根,不合题意
当时,
4.
当时,显然符合条件;
当时,则
5. 直线为,设抛物线上的点

三、解答题
1.解:当时,,曲线为一个单位圆;
当时,,曲线为焦点在轴上的椭圆;
当时,,曲线为两条平行的垂直于轴的直线;
当时,,曲线为焦点在轴上的双曲线;
当时,,曲线为焦点在轴上的等轴双曲线。
2.解:双曲线的不妨设,则
,而

3.证明:设,则中点,得

即,的垂直平分线的斜率
的垂直平分线方程为
当时,
而,
4.解:设,的中点,
而相减得
即,
而在椭圆内部,则即。
(数学选修2-1) 第三章 空间向量 [基础训练A组]
一、选择题
1.D 而零向量与任何向量都平行
2.A 关于某轴对称,则某坐标不变,其余全部改变
3.C
4.A ,,得为锐角;
,得为锐角;,得为锐角;所以为锐角三角形
5.C
,当时,取最小值
6.D
二、填空题
1. ,
2.垂直
3.若,则;若,则
4.
5.

6.

7.
8.

则,而另可设

特别说明:
《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级: [基础训练A组],
[综合训练B组],
[提高训练C组]
建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
本套资料酌收复印工本费。
李传牛老师保留本作品的著作权,未经许可不得翻印!
联络方式:(移动电话)13976611338,69626930 李老师。
(电子邮件)lcn111@sohu.com
目录:数学选修2-2
第一章 导数及其应用 [基础训练A组]
第一章 导数及其应用 [综合训练B组]
第一章 导数及其应用 [提高训练C组]
第二章 推理与证明 [基础训练A组]
第二章 推理与证明 [综合训练B组]
第二章 推理与证明 [提高训练C组]
第三章 复数 [基础训练A组]
第三章 复数 [综合训练B组]
第三章 复数 [提高训练C组]

(本份资料工本费:4.00元)
新课程高中数学测试题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列以及部分选修4系列。欢迎使用本资料
辅导咨询电话:13976611338,李老师。
(数学选修2-2)第一章 导数及其应用
[基础训练A组]
一、选择题
1.若函数在区间内可导,且则
的值为( )
A. B. C. D.
2.一个物体的运动方程为其中的单位是米,的单位是秒,
那么物体在秒末的瞬时速度是( )
A.米/秒 B.米/秒
C.米/秒 D.米/秒
3.函数的递增区间是( )
A. B.
C. D.
4.,若,则的值等于( )
A. B.
C. D.
5.函数在一点的导数值为是函数在这点取极值的( )
A.充分条件 B.必要条件
C.充要条件 D.必要非充分条件
6.函数在区间上的最小值为( )
A. B.
C. D.
二、填空题
1.若,则的值为_________________;
2.曲线在点 处的切线倾斜角为__________;
3.函数的导数为_________________;
4.曲线在点处的切线的斜率是_________,切线的方程为_______________;
5.函数的单调递增区间是___________________________。
三、解答题
1.求垂直于直线并且与曲线相切的直线方程。
2.求函数的导数。
3.求函数在区间上的最大值与最小值。
4.已知函数,当时,有极大值;
(1)求的值;(2)求函数的极小值。
新课程高中数学测试题组(13976611338)
(数学选修2-2)第一章 导数及其应用
[综合训练B组]
一、选择题
1.函数有( )
A.极大值,极小值
B.极大值,极小值
C.极大值,无极小值
D.极小值,无极大值
2.若,则( )
A. B.
C. D.
3.曲线在处的切线平行于直线,则点的坐标为( )
A. B.
C.和 D.和
4.与是定义在R上的两个可导函数,若,满足,则
与满足( )
A. B.为常数函数
C. D.为常数函数
5.函数单调递增区间是( )
A. B. C. D.
6.函数的最大值为( )
A. B. C. D.
二、填空题
1.函数在区间上的最大值是 。
2.函数的图像在处的切线在x轴上的截距为________________。
3.函数的单调增区间为 ,单调减区间为___________________。
4.若在增函数,则的关系式为是 。
5.函数在时有极值,那么的值分别为________。
三、解答题
已知曲线与在处的切线互相垂直,求的值。
2.如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去
四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长
为多少时,盒子容积最大?
3. 已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间。
4.平面向量,若存在不同时为的实数和,使
且,试确定函数的单调区间。
新课程高中数学测试题组(13976611338)
(数学选修2-2) 第一章 导数及其应用
[提高训练C组]
一、选择题
1.若,则等于( )
A. B. C. D.
2.若函数的图象的顶点在第四象限,则函数的图象是( )
3.已知函数在上是单调函数,则实数的
取值范围是( )
A. B.
C. D.
4.对于上可导的任意函数,若满足,则必有( )
A. B.
C. D.
5.若曲线的一条切线与直线垂直,则的方程为( )
A. B. C. D.
6.函数的定义域为开区间,导函数在内的图象如图所示,
则函数在开区间内有极小值点(  )
A.个
B.个
C.个
D.个
二、填空题
1.若函数在处有极大值,则常数的值为_________;
2.函数的单调增区间为 。
3.设函数,若为奇函数,则=__________
4.设,当时,恒成立,则实数的
取值范围为 。
5.对正整数,设曲线在处的切线与轴交点的纵坐标为,则
数列的前项和的公式是  
三、解答题
1.求函数的导数。
2.求函数的值域。
3.已知函数在与时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。
4.已知,,是否存在实数,使同时满足下列两个条件:(1)在上是减函数,在上是增函数;(2)的最小值是,若存在,求出,若不存在,说明理由.
新课程高中数学测试题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
辅导咨询电话:13976611338,李老师。
(数学选修2-2)第二章 推理与证明
[基础训练A组]
一、选择题
1.数列…中的等于( )
A. B. C. D.
2.设则( )
A.都不大于 B.都不小于
C.至少有一个不大于 D.至少有一个不小于
3.已知正六边形,在下列表达式①;②;
③;④中,与等价的有( )
A.个 B.个 C.个 D.个
4.函数内( )
A.只有最大值 B.只有最小值
C.只有最大值或只有最小值 D.既有最大值又有最小值
5.如果为各项都大于零的等差数列,公差,则( )
A. B.
C. D.
6. 若,则( )
A. B. C. D.
7.函数在点处的导数是 ( )
A. B. C. D.
二、填空题
1.从中得出的一般性结论是_____________。
2.已知实数,且函数有最小值,则=__________。
3.已知是不相等的正数,,则的大小关系是_________。
4.若正整数满足,则
5.若数列中,则。
三、解答题
1.观察(1)
(2)
由以上两式成立,推广到一般结论,写出你的推论。
2.设函数中,均为整数,且均为奇数。
求证:无整数根。
3.的三个内角成等差数列,求证:
4.设图像的一条对称轴是.
(1)求的值;
(2)求的增区间;
(3)证明直线与函数的图象不相切。
新课程高中数学测试题组(13976611338)
(数学选修2-2)第二章 推理与证明
[综合训练B组]
一、选择题
1.函数,若
则的所有可能值为( )
A. B. C. D.
2.函数在下列哪个区间内是增函数( )
A. B.
C. D.
3.设的最小值是( )
A. B. C.-3 D.
4.下列函数中,在上为增函数的是 ( )
A. B.
C. D.
5.设三数成等比数列,而分别为和的等差中项,则( )
A. B. C. D.不确定
6.计算机中常用的十六进制是逢进的计数制,采用数字和字母共个计数符号,这些符号与十进制的数字的对应关系如下表:
十六进制
0
1
2
3
4
5
6
7
十进制
0
1
2
3
4
5
6
7
十六进制
8
9
A
B
C
D
E
F
十进制
8
9
10
11
12
13
14
15
例如,用十六进制表示,则( )
A. B. C. D.
二、填空题
1.若等差数列的前项和公式为,
则=_______,首项=_______;公差=_______。
2.若,则。
3.设,利用课本中推导等差数列前项和公式的方法,可求得
的值是________________。
4.设函数是定义在上的奇函数,且的图像关于直线对称,则

5.设(是两两不等的常数),则的值是 ______________.
三、解答题
1.已知:
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明。
2.计算:
3.直角三角形的三边满足 ,分别以三边为轴将三角形旋转一周所得旋转体的体积记为,请比较的大小。
4.已知均为实数,且,
求证:中至少有一个大于。
新课程高中数学测试题组(13976611338)
(数学选修2-2)第二章 推理与证明
[提高训练C组]
一、选择题
1.若则是的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.如图是函数的大致图象,则等于( )
A. B. C. D.

3.设,则( )
A. B.
C. D.
4.将函数的图象和直线围成一个封闭的平面图形,
则这个封闭的平面图形的面积是( )
A. B.
C. D.
5.若是平面上一定点,是平面上不共线的三个点,动点满足
,则的轨迹一定通过△的( )
A.外心 B.内心
C.重心 D.垂心
6.设函数,则的值为( )txjy
A. B.
C.中较小的数 D. 中较大的数
7.关于的方程有实根的充要条件是( )
A. B.
C. D.
二、填空题
1.在数列中,,则
2.过原点作曲线的切线,则切点坐标是______________,切线斜率是_________。
3.若关于的不等式的解集为,则的范围是____
4.,
经计算的,
推测当时,有__________________________.
5.若数列的通项公式,记,试通过计算的值,推测出
三、解答题
1.已知 求证:
2.求证:质数序列……是无限的
3.在中,猜想的最大值,并证明之。
4.用数学归纳法证明,
新课程高中数学测试题组
根据最新课程标准,参考独家内部资料,
精心编辑而成;本套资料分必修系列和选修系列以及部分选修4系列。欢迎使用本资料
辅导咨询电话:13976611338,李老师。
(数学选修2-2)第三章 复数
[基础训练A组]
一、选择题
1.下面四个命题
(1) 比大
(2)两个复数互为共轭复数,当且仅当其和为实数
(3) 的充要条件为
(4)如果让实数与对应,那么实数集与纯虚数集一一对应,
其中正确的命题个数是( )
A. B. C. D.
2.的虚部为( )
A. B. C. D.
3.使复数为实数的充分而不必要条件是由 ( )
A. B.
C.为实数 D.为实数
4.设则的关系是( )
A. B.
C. D.无法确定
5. 的值是( )
A. B. C. D.
6.已知集合的元素个数是( )
A. B. C. D. 无数个
二、填空题
1. 如果是虚数,则中是
虚数的有 _______个,是实数的有 个,相等的有 组.
2. 如果,复数在复平面上的
对应点在 象限.
3. 若复数是纯虚数,则= .
4. 设若对应的点在直线上,则的值是 .
5. 已知则= .
6. 若,那么的值是 .
7. 计算 .
三、解答题
1.设复数满足,且是纯虚数,求.
2.已知复数满足: 求的值.
(数学选修2-2)第三章 复数
[综合训练B组]
一、选择题
1.若是( ).
A.纯虚数 B.实数 C.虚数 D.不能确定
2.若有分别表示正实数集,负实数集,纯虚数集,则集合=( ).
A. B. C. D.
3.的值是( ).
A. B. C. D.
4.若复数满足,则的值等于( )
A. B. C. D.
5.已知,那么复数在平面内对应的点位于( )
A.第一象限 B. 第二象限
C.第三象限 D.第四象限
6.已知,则等于( )
A. B. C. D.
7.若,则等于( )
A. B. C. D.
8.给出下列命题
(1)实数的共轭复数一定是实数;
(2)满足的复数的轨迹是椭圆;
(3)若,则
其中正确命题的序号是( )
A. B. C. D.
二、填空题
1.若,其中、,使虚数单位,则_________。
2.若 , ,且为纯虚数,则实数的值为 .
3.复数的共轭复数是_________。
4.计算__________。
5.复数的值是___________。
6.复数在复平面内,所对应的点在第________象限。
7.已知复数复数则复数__________.
8.计算______________。
9.若复数(,为虚数单位位)是纯虚数,则实数的值为___________。
10.设复数若为实数,则_____________
新课程高中数学训练题组参考答案(咨询13976611338)
(数学选修2-2)第一章 导数及其应用 [基础训练A组]
一、选择题
1.B

2.C
3.C 对于任何实数都恒成立
4.D
5.D 对于不能推出在取极值,反之成立
6.D
得而端点的函数值,得
二、填空题
1.
2.
3.
4.
5.
三、解答题
1.解:设切点为,函数的导数为
切线的斜率,得,代入到
得,即,。
2.解:

3.解:,
当得,或,或,
∵,,
列表:

+
+


又;右端点处;
∴函数在区间上的最大值为,最小值为。
4.解:(1)当时,,

(2),令,得
(数学选修2-2)第一章 导数及其应用 [综合训练B组]
一、选择题
1.C ,当时,;当时,
当时,;取不到,无极小值
2.D
3.C 设切点为,,
把,代入到得;把,代入到得,所以和
4.B ,的常数项可以任意
5.C 令
6.A 令,当时,;当时,,,在定义域内只有一个极值,所以
二、填空题
1. ,比较处的函数值,得
2.
3.
4. 恒成立,

5.
,当时,不是极值点
三、解答题
1.解:

2.解:设小正方形的边长为厘米,则盒子底面长为,宽为

,(舍去)
,在定义域内仅有一个极大值,

3.解:(1)的图象经过点,则,
切点为,则的图象经过点

(2)
单调递增区间为
4.解:由得
所以增区间为;减区间为。
(数学选修2-2)第一章 导数及其应用 [提高训练C组]
一、选择题
1.A
2.A 对称轴,直线过第一、三、四象限
3.B 在恒成立,
4.C 当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有

5.A 与直线垂直的直线为,即在某一点的导数为,而,所以在处导数为,此点的切线为
6.A 极小值点应有先减后增的特点,即
二、填空题
1. ,时取极小值
2. 对于任何实数都成立
3.

要使为奇函数,需且仅需,
即:。又,所以只能取,从而。
4. 时,
5. ,
令,求出切线与轴交点的纵坐标为,所以,则数列的前项和
三、解答题
1.解:

2.解:函数的定义域为,
当时,,即是函数的递增区间,当时,
所以值域为。
3.解:(1)
由,得
,函数的单调区间如下表:



(
极大值
(
极小值
(
所以函数的递增区间是与,递减区间是;
(2),当时,
为极大值,而,则为最大值,要使
恒成立,则只需要,得。
4.解:设
∵在上是减函数,在上是增函数
∴在上是减函数,在上是增函数.
∴ ∴ 解得
经检验,时,满足题设的两个条件.
(数学选修2-2)第二章 推理与证明 [基础训练A组]
一、选择题
1.B 推出
2.D ,三者不能都小于
3.D ①;②
③;④,都是对的
4.D ,已经历一个完整的周期,所以有最大、小值
5.B 由知道C不对,举例
6.C
7.D
二、填空题
1. 注意左边共有项
2. 有最小值,则,对称轴,

3.
4.
5. 前项共使用了个奇数,由第个到第个奇数的和组成,即
三、解答题
1. 若都不是,且,则
2.证明:假设有整数根,则
而均为奇数,即为奇数,为偶数,则同时为奇数‘
或同时为偶数,为奇数,当为奇数时,为偶数;当为偶数时,也为偶数,即为奇数,与矛盾。
无整数根。
3.证明:要证原式,只要证
即只要证而

4.解:(1)由对称轴是,得,
而,所以
(2)
,增区间为
(3),即曲线的切线的斜率不大于,
而直线的斜率,即直线不是函数的切线。
(数学选修2-2)第二章 推理与证明 [综合训练B组]
一、选择题
1.C ,当时,;
当时,
2.B 令,
由选项知
3.C 令
4.B ,B中的恒成立
5.B ,

6.A
二、填空题
1.,其常数项为,即

2.

3.

4.
,都是
5. ,



三、解答题
1.解: 一般性的命题为
证明:左边

所以左边等于右边
2.解:
3.解:
因为,则
4.证明:假设都不大于,即,得,
而,
即,与矛盾,
中至少有一个大于。
(数学选修2-2)第二章 推理与证明 [提高训练C组]
一、选择题
1.B 令,不能推出;
反之
2.C 函数图象过点,得
,则,,且是
函数的两个极值点,即是方程的实根
3.B ,
,即
4.D 画出图象,把轴下方的部分补足给上方就构成一个完整的矩形
5.B
是的内角平分线
6.D
7.D 令,则原方程变为,
方程有实根的充要条件是方程在上有实根
再令,其对称轴,则方程在上有一实根,
另一根在以外,因而舍去,即
二、填空题
1.

2. 设切点,函数的导数,切线的斜率
切点
3. ,即

4.
5.

三、解答题
1.证明:


2.证明:假设质数序列是有限的,序列的最后一个也就是最大质数为,全部序列

再构造一个整数,
显然不能被整除,不能被整除,……不能被整除,
即不能被中的任何一个整除,
所以是个质数,而且是个大于的质数,与最大质数为矛盾,
即质数序列……是无限的
3.证明:


当且仅当时等号成立,即
所以当且仅当时,的最大值为
所以
4.证明: 当时,左边,右边,即原式成立
假设当时,原式成立,即
当时,

即原式成立

(数学选修2-2)第三章 复数 [基础训练A组]
一、选择题
1.A (1) 比大,实数与虚数不能比较大小;
(2)两个复数互为共轭复数时其和为实数,但是两个复数的和为实数不一定是共轭复数;
(3)的充要条件为是错误的,因为没有表明是否是实数;
(4)当时,没有纯虚数和它对应
2.D ,虚部为
3.B ;,反之不行,例如;为实数不能推出
,例如;对于任何,都是实数
4.A
5.C
6.B
二、填空题
1. 四个为虚数;五个为实数;
三组相等
2.三 ,
3.
4.

5.
6.

7. 记

三、解答题
1.解:设,由得;
是纯虚数,则

2.解:设,而即

(数学选修2-2)第三章 复数 [综合训练B组]
一、选择题
1.B

2.B
3.D

4.C ,
5.A
6.C
7.B
8.C
二、填空题
1. 2. 3. 4. 5. 6.二 7. 8. 9. 10.
特别说明:
《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],
[综合训练B组],
[提高训练C组]
建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
本套资料酌收复印工本费。
李传牛老师保留本作品的著作权,未经许可不得翻印!
联络方式:(移动电话)13976611338,69626930 李老师。
(电子邮件)lcn111@sohu.com
目录:数学选修2-3
数学选修2-3第一章:计数原理 [基础训练A组]
数学选修2-3第一章:计数原理 [综合训练B组]
数学选修2-3第一章:计数原理 [提高训练C组]

数学选修2-3第二章:离散型随机变量解答题精选
(本份资料工本费:4.00元)
新课程高中数学训练题组
根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!
辅导咨询电话:13976611338,李老师。
(数学选修2--3) 第一章 计数原理
[基础训练A组]
一、选择题
1.将个不同的小球放入个盒子中,则不同放法种数有( )
A. B. C. D.
2.从台甲型和台乙型电视机中任意取出台,其中至少有甲型与乙型电视机
各台,则不同的取法共有( )
A.种 B.种 C.种 D.种
3.个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )
A. B. C. D.
4.共个人,从中选1名组长1名副组长,但不能当副组长,
不同的选法总数是( )
A. B. C. D.
5.现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、
物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是( )
A.男生人,女生人 B.男生人,女生人
C.男生人,女生人 D.男生人,女生人.
6.在的展开式中的常数项是( )
A. B. C. D.
7.的展开式中的项的系数是( )
A. B. C. D.
8.展开式中只有第六项二项式系数最大,则展开式中的常数项是( )
A. B. C. D.
二、填空题
1.从甲、乙,……,等人中选出名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.
2.名男生,名女生排成一排,女生不排两端,则有 种不同排法.
3.由这六个数字组成_____个没有重复数字的六位奇数.
4.在的展开式中,的系数是 .
5.在展开式中,如果第项和第项的二项式系数相等,
则 , .
6.在的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?
7.用四个不同数字组成四位数,所有这些四位数中的数字的总和为,则 .
8.从中任取三个数字,从中任取两个数字,组成没有重复数字的五位数,共有________________个?
三、解答题
1.判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选名参加省数学竞赛,有多少种不同的选法?
(3)有八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
2.个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,
(2)甲不排头,也不排尾,
(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,
(5)甲、乙、丙三人两两不相邻,
(6)甲在乙的左边(不一定相邻),
(7)甲、乙、丙三人按从高到矮,自左向右的顺序,
(8)甲不排头,乙不排当中。
3.解方程

4.已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数量小的项.
5.(1)在的展开式中,若第项与第项系数相等,且等于多少?
(2)的展开式奇数项的二项式系数之和为,
则求展开式中二项式系数最大项。
6.已知其中是常数,计算
(数学选修2--3) 第一章 计数原理
[综合训练B组]
一、选择题
1.由数字、、、、组成没有重复数字的五位数,
其中小于的偶数共有( )
A.个 B.个
C.个 D. 个
2.张不同的电影票全部分给个人,每人至多一张,则有
不同分法的种数是( )
A. B.
C. D.
3.且,则乘积等于
A. B.
C. D.
4.从字母中选出4个数字排成一列,其中一定要选出和,
并且必须相邻(在的前面),共有排列方法( )种.
A. B.
C. D.
5.从不同号码的双鞋中任取只,其中恰好有双的取法种数为( )
A. B.
C. D.
6.把把二项式定理展开,展开式的第项的系数是( )
A. B.
C. D.
7.的展开式中,的系数是,
则的系数是( )
A. B.
C. D.
8.在的展开中,的系数是( )
A. B.
C. D.
二、填空题
1.个人参加某项资格考试,能否通过,有 种可能的结果?
2.以这几个数中任取个数,使它们的和为奇数,则共有 种不同取法.
3.已知集合,,从集合,中各取一个元素作为点的坐标,可作出不同的点共有_____个.
4.且若则______.
5.展开式中的常数项有
6.在件产品中有件是次品,从中任意抽了件,至少有件是次品的抽法共有______________种(用数字作答).
7.的展开式中的的系数是___________
8.,则含有五个元素,且其中至少有两个偶数的子集个数为_____.
三、解答题
1.集合中有个元素,集合中有个元素,集合中有个元素,集合满足
(1)有个元素; (2)
(3), 求这样的集合的集合个数.
2.计算:(1);

(2).
(3)
3.证明:.
4.求展开式中的常数项。
5.从中任选三个不同元素作为二次函数的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?
6.张椅子排成,有个人就座,每人个座位,恰有个连续空位的坐法共有多少种?
(数学选修2--3) 第一章 计数原理
[提高训练C组]
一、选择题
1.若,则的值为( )
A. B. C. D.
2.某班有名男生,名女生,现要从中选出人组成一个宣传小组,
其中男、女学生均不少于人的选法为( )
A. B.
C. D.
3.本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )
A. B. C. D.
4.设含有个元素的集合的全部子集数为,其中由个元素
组成的子集数为,则的值为( )
A. B.
C. D.
5.若,
则的值为( )
A. B.
C. D.
6.在的展开式中,若第七项系数最大,则的值可能等于( )
A. B.
C. D.
7.不共面的四个定点到平面的距离都相等,这样的平面共有( )
A.个 B.个
C.个 D.个
8.由十个数码和一个虚数单位可以组成虚数的个数为( )
A. B.
C. D.
二、填空题
1.将数字填入标号为的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?
2.在△的边上有个点,边上有个点,加上点共个点,以这个点为顶点的三角形有 个.
3.从,这七个数字中任取三个不同数字作为二次函数的系数则可组成不同的函数_______个,其中以轴作为该函数的图像的对称轴的函数有______个.
4.若的展开式中的系数为,则常数的值为 .
5.若则自然数_____.
6.若,则.
7.的近似值(精确到)是多少?
8.已知,那么等于多少?
三、解答题
1.个人坐在一排个座位上,问(1)空位不相邻的坐法有多少种?(2) 个空位只有个相邻的坐法有多少种?(3) 个空位至多有个相邻的坐法有多少种?
2.有个球,其中个黑球,红、白、蓝球各个,现从中取出个球排成一列,共有多少种不同的排法?
3.求展开式中按的降幂排列的前两项.
4.用二次项定理证明能被整除.
5.求证:.
6.(1)若的展开式中,的系数是的系数的倍,求;
(2)已知的展开式中, 的系数是的系数与的系数的等差中项,求;
(3)已知的展开式中,二项式系数最大的项的值等于,求.
离散型随机变量解答题精选(选修2--3)
人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:
(1)第次拨号才接通电话;  
(2)拨号不超过次而接通电话.
解:设{第次拨号接通电话},
(1)第次才接通电话可表示为于是所求概率为
(2)拨号不超过次而接通电话可表示为:于是所求概率为

出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是
(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;
(2)求这位司机在途中遇到红灯数ξ的期望和方差。
解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,
所以
(2)易知 ∴
奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,求此次摇奖获得奖金数额的数学期望
解:设此次摇奖的奖金数额为元,
当摇出的个小球均标有数字时,;
当摇出的个小球中有个标有数字,1个标有数字时,;
当摇出的个小球有个标有数字,个标有数字时,。
所以,

答:此次摇奖获得奖金数额的数字期望是元
4.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,
数学为,英语为,问一次考试中
  (Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少
解:分别记该生语、数、英考试成绩排名全班第一的事件为,

(Ⅰ)
答:三科成绩均未获得第一名的概率是
(Ⅱ)()



答:恰有一科成绩未获得第一名的概率是
5.如图,两点之间有条网线并联,它们能通过的最大信息量分别为.现从中任取三条网线且使每条网线通过最大的信息量.
(I)设选取的三条网线由到可通过的信息总量为,当时,则保证信息畅通.求线路信息畅通的概率;
(II)求选取的三条网线可通过信息总量的数学期望.
解:(I)

(II)
∴线路通过信息量的数学期望

答:(I)线路信息畅通的概率是. (II)线路通过信息量的数学期望是
6.三个元件正常工作的概率分别为将它们中某两个元件并联后再和第三元件串联接入电路.
(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?
(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.
解:记“三个元件正常工作”分别为事件,则
(Ⅰ)不发生故障的事件为.
∴不发生故障的概率为
(Ⅱ)如图,此时不发生故障的概率最大.证明如下:
图1中发生故障事件为
∴不发生故障概率为
图2不发生故障事件为,同理不发生故障概率为
7.要制造一种机器零件,甲机床废品率为,而乙机床废品率为,而它们
的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:
(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.
解:设事件“从甲机床抽得的一件是废品”;“从乙机床抽得的一件是废品”.

(1)至少有一件废品的概率
(2)至多有一件废品的概率
8.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差
解:(1)记甲、乙分别解出此题的事件记为.
设甲独立解出此题的概率为,乙为.

9.某保险公司新开设了一项保险业务,若在一年内事件发生,该公司要赔偿元.设在一年内发生的概率为,为使公司收益的期望值等于的百分之十,公司应要求顾客交多少保险金?
解:设保险公司要求顾客交元保险金,若以 表示公司每年的收益额,则是一个随机变量,其分布列为:
因此,公司每年收益的期望值为. 为使公司收益的期望值等于的百分之十,只需,即, 故可得. 即顾客交的保险金为 时,可使公司期望获益.
10.有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是.
(1)求这批产品不能出厂的概率(保留三位有效数字);
(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).
解:(1)这批食品不能出厂的概率是: . (2)五项指标全部检验完毕,这批食品可以出厂的概率是:      五项指标全部检验完毕,这批食品不能出厂的概率是:        由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:.
11.高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛; ②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为
(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?
(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?
解:(I)参加单打的队员有种方法.
参加双打的队员有种方法.
所以,高三(1)班出场阵容共有(种)
(II)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,
所以,连胜两盘的概率为
12.袋中有大小相同的个白球和个黑球,从中任意摸出个,求下列事件发生的概率.
(1)摸出个或个白球 (2)至少摸出一个黑球.
解: (Ⅰ)设摸出的个球中有个白球、个白球分别为事件,则

∵为两个互斥事件 ∴
即摸出的个球中有个或个白球的概率为
(Ⅱ)设摸出的个球中全是白球为事件,则
至少摸出一个黑球为事件的对立事件
其概率为
练习:
抛掷颗骰子,所得点数之和记为,那么表示的随机试验结果为____________。
设某项试验的成功概率是失败概率的倍,用随机变量描述次试验的成功次数,
则_______________。
3.若的分布列为:
(
0
1
P
p
q
其中,则____________________,____________________,
新课程高中数学训练题组参考答案(咨询13976611338)
数学选修2-3 第一章 计数原理 [基础训练A组]
一、选择题
1.B 每个小球都有种可能的放法,即
2.C 分两类:(1)甲型台,乙型台:;(2)甲型台,乙型台:

3.C 不考虑限制条件有,若甲,乙两人都站中间有,为所求
4.B 不考虑限制条件有,若偏偏要当副组长有,为所求
5.B 设男学生有人,则女学生有人,则

6.A

7.B

8.A 只有第六项二项式系数最大,则,
,令
二、填空题
1.(1) ;(2) ;(3)
2. 先排女生有,再排男生有,共有
3. 既不能排首位,也不能排在末尾,即有,其余的有,共有
4. ,令
5.
6. 先排首末,从五个奇数中任取两个来排列有,其余的,共有
7. 当时,有个四位数,每个四位数的数字之和为
;当时,不能被整除,即无解
8. 不考虑的特殊情况,有若在首位,则

三、解答题
1.解:(1)①是排列问题,共通了封信;②是组合问题,共握手次。
(2)①是排列问题,共有种选法;②是组合问题,共有种选法。
(3)①是排列问题,共有个商;②是组合问题,共有个积。
2.解:(1)甲固定不动,其余有,即共有种;
(2)甲有中间个位置供选择,有,其余有,即共有种;
(3)先排甲、乙、丙三人,有,再把该三人当成一个整体,再加上另四人,相当于人的全排列,即,则共有种;
(4)从甲、乙之外的人中选个人排甲、乙之间,有,甲、乙可以交换有,
把该四人当成一个整体,再加上另三人,相当于人的全排列,
则共有种;
(5)先排甲、乙、丙之外的四人,有,四人形成五个空位,甲、乙、丙三人排
这五个空位,有,则共有种;
(6)不考虑限制条件有,甲在乙的左边(不一定相邻),占总数的一半,
即种;
(7)先在个位置上排甲、乙、丙之外的四人,有,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即
(8)不考虑限制条件有,而甲排头有,乙排当中有,这样重复了甲排头,乙排当中一次,即
3.解:


4.解:,的通项
当时,展开式中的系数最大,即为展开式中的系数最大的项;
当时,展开式中的系数最小,即为展开式中
的系数最小的项。
5.解:(1)由已知得
(2)由已知得,而展开式中二项式
系数最大项是。
6.解:设,令,得
令,得
新课程高中数学训练题组参考答案(咨询13976611338)
数学选修2-3 第一章 计数原理 [综合训练B组]
一、选择题
1.C 个位,万位,其余,共计
2.D 相当于个元素排个位置,
3.B 从到共计有个正整数,即
4.A 从中选个,有,把看成一个整体,则个元素全排列,
共计
5.A 先从双鞋中任取双,有,再从只鞋中任取只,即,但需要排除
种成双的情况,即,则共计
6.D ,系数为
7.A ,令
则,再令
8.D
二、填空题
1. 每个人都有通过或不通过种可能,共计有
2. 四个整数和为奇数分两类:一奇三偶或三奇一偶,即
3. ,其中重复了一次
4.
5. 的通项为其中的通项为
,所以通项为,令
得,当时,,得常数为;当时,,得常数为;
当时,,得常数为;
6. 件次品,或件次品,
7. 原式,中含有的项是
,所以展开式中的的系数是
8. 直接法:分三类,在个偶数中分别选个,个,个偶数,其余选奇数,
;间接法:
三、解答题
1.解:中有元素

2.解:(1)原式。
(2)原式。
另一方法:

(3)原式
3.证明:左边
右边
所以等式成立。
4.解:,在中,的系数
就是展开式中的常数项。
另一方法: ,
5.解:抛物线经过原点,得,
当顶点在第一象限时,,则有种;
当顶点在第三象限时,,则有种;
共计有种。
6.解:把个人先排,有,且形成了个缝隙位置,再把连续的个空位和个空位
当成两个不同的元素去排个缝隙位置,有,所以共计有种。
新课程高中数学训练题组参考答案(咨询13976611338)
数学选修2-3 第一章 计数原理 [提高训练C组]
一、选择题
1.B
2.D 男生人,女生人,有;男生人,女生人,有
共计
3.A 甲得本有,乙从余下的本中取本有,余下的,共计
4.B 含有个元素的集合的全部子集数为,由个元素组成的子集数
为,
5.A

6.D 分三种情况:(1)若仅系数最大,则共有项,;(2)若与系数相等且最大,则共有项,;(3)若与系数相等且最大,则共有项,,所以的值可能等于
7.D 四个点分两类:(1)三个与一个,有;(2)平均分二个与二个,有
共计有
8.D 复数为虚数,则有种可能,有种可能,共计种可能
二、填空题
1. 分三类:第一格填,则第二格有,第三、四格自动对号入座,不能自由排列;
第一格填,则第三格有,第一、四格自动对号入座,不能自由排列;
第一格填,则第撕格有,第二、三格自动对号入座,不能自由排列;
共计有
2.
3. ,;
4. ,令

5.

6.
而,得
7.
8. 设,令,得
令,得,
三、解答题
1.解:个人排有种, 人排好后包括两端共有个“间隔”可以插入空位.
(1)空位不相邻相当于将个空位安插在上述个“间隔”中,有种插法,
故空位不相邻的坐法有种。
(2)将相邻的个空位当作一个元素,另一空位当作另一个元素,往个“间隔”里插
有种插法,故个空位中只有个相邻的坐法有种。
(3) 个空位至少有个相邻的情况有三类:
①个空位各不相邻有种坐法;
②个空位个相邻,另有个不相邻有种坐法;
③个空位分两组,每组都有个相邻,有种坐法.
综合上述,应有种坐法。
2.解:分三类:若取个黑球,和另三个球,排个位置,有;
若取个黑球,从另三个球中选个排个位置,个黑球是相同的,
自动进入,不需要排列,即有;
若取个黑球,从另三个球中选个排个位置,个黑球是相同的,
自动进入,不需要排列,即有;
所以有种。
3.解:



4.解:

5.证明:


6.解:(1);
(2)
得;
(3)
得,或
所以。