沪教版六年级下第五章 有理数有理数考点复习

文档属性

名称 沪教版六年级下第五章 有理数有理数考点复习
格式 zip
文件大小 127.8KB
资源类型 教案
版本资源 沪教版
科目 数学
更新时间 2015-01-13 13:39:37

图片预览

文档简介

有理数考点复习
考点1、正数和负数
正数:大于零的数
负数:小于零的数(在正数前面加上负号“—”的数)
注意:①0既不是正数也不是负数,它是正负数的分界点
②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数
向北走2000米与向南走1000米,若规 ( http: / / www.21cnjy.com )定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作
七年级一班第一小组五名同学某次数学测验的平 ( http: / / www.21cnjy.com )均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。这五名同学的实际成绩分别是多少分?
观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?
1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 ……
2)、—1、、—3、、—5、、—7、、 、 、 ……
易错点:
误认为凡带正号的数就是正数,误认为凡带负号的数就是负数
例:a一定是正数吗?
对于“0”的含义理解不准确
例:下列说法错误的是( )
A、0是自然数 B、0是整数 C、0是偶数 D、海拔0米表示没有海拔
考点2、有理数
1、有理数的分类
按定义分: 按性质符号分:有理数
注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。
2、0是整数不是分数
例1、把下列各数填在相应的集合内:
π,,-3,2,-1,-0.58,0,-3.14, QUOTE \* MERGEFORMAT ,0.618,10
整数集合:{ …}
分数集合:{ …}
非负数集合:{ …}
例2、下列说法正确的是( )
A 有理数分为正数和负数 B 有理数-a一定表示负数
C 正整数、正分数、负整数、负分数统称为有理数 D 有理数包括整数和分数
2、数轴(重点)
定义:规定了原点、正方向、单位长度的直线
数轴的含义:
(1)数轴是一条直线,可以向两边无限延伸
(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可
(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。
(4)同一数轴的单位长度必须一致
例1、图中哪 一个表示数轴?并说出理由。
例2、请画出一条数轴,在并且在数轴上标出下面的有理数:3,-2,-3.5,,0,+2,,0.5.
如图所示,在数轴上,点A,B,C,D依次表示1.5,-2,2,-2.5。说出个点与原点的位置关系以及与原点的距离是多少个单位长度?
( http: / / www.21cnjy.com / )
例5、如图,数轴上所标出的点中,相邻两点间的距离相等,则点表示的数为( )
A、30 B、50 C、60 D、80
例6、如图,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________
例7、文具店、书店和玩具店一次坐落在一条笔 ( http: / / www.21cnjy.com )直的东西走向的大街上,文具店位于书店西边20m处,玩具店位于书店东边100m处。小明从书店沿街向东走了40m,接着又向东走了60m,你知道此时小明的位置在哪吗?
例8、有理数a,b,c在数轴上的位置如图所示,求的值
相反数(重点)
定义:只有符号不同的两个数叫做相反数。(在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。)
相反数的表示方法及多重符号的化简:
(1)
例1、有理数的相反数是( )
(A) (B) (C)3 (D) –3
例2、a的相反数是 , -a的相反数是 , 0的相反数是
例3、、若a和b互为相反数,则a+b=
例4、如果,那么,两个实数一定是 ( )
A.都等于0 B.一正一负 C.互为相反数 D.互为倒数
例5、如果与1互为相反数,则等于( )
A.2 B. C.1 D.
4、绝对值(难点)
绝对值的定义:数轴上表示a的点与原点的距离叫做a的绝对值,记为 ∣a∣,读作:a的绝对值
因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。即:任何数的绝对值都是正数(0的绝对值是0)
绝对值的代数定义:1)一个正数的绝对值是它本身
2)一个负数的绝对值是它的相反数
3)0的绝对值是0
绝对值的计算规律:
互为相反数的两个数的绝对值相等
若,则a=b或a=-b;

例1、如果| -a | = -a,下列成立的是( )
A .a<0 B.a≦0 C.a>0 D.a≧0
例2、 的绝对值是8。
例3、若,则b= ,若 ,若,则a 0
例4、若,则等于( )
A、2 B、8 C、2或8 D、
例5、已知
求a,b的值
求的值

例6、计算:
例7、 (2)
例8、根据,解答下列问题
(1)当x为何值时, 有最小值?最小值是多少?
(2)当x为何值时, 有最大值?最大值是多少?
例9、已知某零件的标准直径 ( http: / / www.21cnjy.com )是10mm,超过规定直径长度的数量(单位:mm)记作正数,不足规定直径长度的数量(单位:mm)记作负数,检验员某次抽查了5件样品,检查的结果如下表:
序号 1 2 3 4 5
直径长度(mm) +0.1 -0.15 +0.2 -0.05 +0.25
试指出哪件样品的大小最符合要求;
如果规定偏差的绝对值在0.18mm之内 ( http: / / www.21cnjy.com )是正品,偏差的绝对值在0,18mm—0.22mm之间是次品,偏差绝对值查过0.22mm是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?
易错点:1、画数轴时,缺少要素
2、误认为,则a>0;若,则a<0
例:已知,则a的值是( )
A、正数 B、负数 C、非正数 D、非负数
3、相反数和倒数的定义相混淆
5、有理数的大小比较
(1)正数大于0,0大于负数,正数大于负数
(2)两个负数,绝对值大的反而小
例1、比较下列有理数的大小
-(-5)和- -(+3)与0
例2、若m>0,n<0,且|m|>|n|,用“>”把、、、连接起来。
考点3、有理数的加减(重难点)
1、有理数加法
(1)同号两数相加,取相同的符号,并把其绝对值相加;
(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)互为相反数的两个数相加得零;
(4)一个数与零相加,仍得这个数。
例1、如果两个有理数的和是正数,那么这两个数( )。
都是正数
一个是正数,一个是零
两个数异号,且正数的绝对值较大
D.以上三种情况都有可能
例2、简单计算
(1); (2); (3); (4)
(5)(-51)+(+37); (6)(+15)+(-15); (7)(+4.25)+; (8)
(9)15+0 ;(10)-4.7+0 ;(11)0+0
例3、复杂有理数计算
(1)(+26)+(-14)+(-16)+(+18) (2)
例4、已知与互为相反数,求的值。
例5、小明在一条南北方向的公路上散步,他从A地出发,每10分钟记录自己的散步情况(向南为正方向,单位:米),1小时后停下来时记录如下:
-1008,1100,-976,1010,-827,946
此时他在A地的什么方向,距离A地多远?小明散步共走了多少米?
例6、a与b互为相反数,b与c相乘的积是最大的负整数,d与e的和等于-2,则
的值是多少?
例7、读一读:式子“1+2+3+4+5...+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写不方便,为简单起见,我们可以将“1+2+3+4+5...+100”表示为,这是求和符号。例如“1+3+5+7+9+...+99”(即从1开始的100以内的连续奇数的和)可表示为。通过对以上材料的阅读,请回答问题:
(1)2+4+6+8+...+100(即从2开始的100以内的连续偶数的和求和符号表示为_____;
(2)计算:______(填写最后的计算结果)。
例8、从图(1)中找规律,并在图(2)填上合适的数
2、有理数减法
①有理数减法法则中,字母a,b表示任意有理数;0减去任何数得这个数的相反数。
②有理数的减法可转化为有理数的加法进行计算,不要将减法法则与加法法则中异号两书相加混淆。
③计算有理数的减法时,要把减号变为 ( http: / / www.21cnjy.com )加好,把减数变为它的相反数,即必须同时改变两个符号:意识运算符号由“-”变为“+”;而是减数的性质符号由正变为负或由负变为正。
例1、下列说法正确的是( )
两数相减,被减数一定大于减数
0减去一个数仍得这个数
互为相反的两个数差为0
减去一个正数,差一定小于被减数
例2、计算:
(2) (3) (4)
例3、列出算式并计算下列各题:
潜水员从海平面以下24m处上升到海平面以下15m处,此潜水员上升了多少米?
例4、已知a<0,b<0,且试判断a-b的符号。
3、有理数加减的综合运用
例1、计算:
(2)
(3)1-2-3+4+5-6-7+8+9-11+12+...+2005-2006-2007+2008+2009-2010.
(4)
例2、以地面为基准,A处高+2.5米,B处高为-17.8米,C处高-32.44m,问:
A处比B出高多少?
B处和C处哪个高?高多少?
A处和C处哪个低?低多少?
例3、小亮做这样一道题:“计算”,其中表示被污染看不清的一个数,他翻开答案知道该题的结果是6,那么 表示的数是多少?
例4、-a,-b在数轴上的位置如图,
-b -a 0
化简:
例5、某摩托车厂本周计划每日生产2 ( http: / / www.21cnjy.com )50辆摩托车,由于工人实行轮休,每天上班人数不一定相等,实际每日产量与计划每日产量相比情况如下表:(增加的辆数为正数,减少的辆数为负数)
星期 一 二 三 四 五 六 日
增减 -5 +7 -3 +4 +10 -9 -25
求星期日生产摩托车多少辆?
本周总产量与计划产量相比是增加了,还是减少了?差是多少?
产量最多的一天与产量最少的一天的产量差是多少?
考点4 有理数的乘除、乘方
有理数的乘法
①两数相乘,同号得正,异号得负;
②任何数与零相乘,都得零;
③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正。
2、有理数除法
①两数相除,同号得正,异号得负
②零除以任何一个不为零的数,都得零;
③除以一个数等于乘以这个数的倒数(零不能作除数)
3、有理数的乘方
负数的偶次幂为正数,负数的奇次幂为负数
4、有理数运算律
①加法的交换律 a+b=b+a; ②加法的结合律 a+(b+c)=(a+b)+c;
③存在数0,使 0+a=a+0=a; ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交换律 ab=ba; ⑥乘法的结合律 a(bc)=(ab)c;
⑦分配律 a(b+c)=ab+ac; ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
⑩0a=0 文字解释:一个数乘0还于0。
注意:先乘方、开方,后乘除,最后加减;有括号时,先算括号里面的;同级运算按从左至右的顺序进行,同时注意运算律的灵活应用。
加减是一级运算,乘除是二级运算,乘方、开方是三级运算。
例1、计算
(2)
(3) (4)
(5) (6)
(7) (8)
例2、“!”是一种运算符号,并且
例3、阅读下列材料
根据以上信息,求出下式的结果。
例3、若a,b互为相反数,c,d互为倒数,m的绝对值是2,求的值。
例4、若ab<0,-b>0,且,则a+b 0(填“>”“<”)
考点5、近似数、有效数字与科学计数法
① 近似数:一个与实际数比较接近的数,称为近似数。
② 有效数字:对于一个近似数,从左边第一个不 ( http: / / www.21cnjy.com )是0的数字开始,草最末一个数字止,都是这个近似数的有效数字。科学计数法:把一个数记作a×10n形式(其中1≤ a ≤10,n为整数。)
题型1 近似值
例1 光的速度大约是300 000 000m/s,用科学计数法表示为( )。
m/s B.m/s C.m/s D.m/s
例2 用科学计数法表示下列各数
(1)7230; (2)100 000; (3)-102 600; (4)15亿。
例3 据国家环保总局通报,北京市是“十五”水污染防治计划完成最好的城市,预计今年年底,北京市污水处理能力可以达到每天吨,其表示的原数是( )。
A.182000 B.182000 000 C.18200 D.1820 000
例4 地球绕太阳每小时转动的路程约是km,用科学计数法表示地球一个月(以每月30天,每天24小时计算)转动通过的路程越是_______km.
例5 某城市有50万户 ( http: / / www.21cnjy.com )居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水,每个漏水水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年要漏掉多少吨水?(一年按365天计)
例6、指出下列问题中出现的数,哪些是精确数,哪些是近似数?
(1)某中学七年级有200名学生;
(2)小兰的身高为1.6米;
(3)数学课本共有178页;
(4)某十字路口每天的车流量大约有10000辆;
(5)我们居住的地球的平均半径约为6400千米。
题型2: 精确度
例1、 由四舍五入法得到的近似数3.05,它是精确到( )
A、十位 B、个位 C、十分位 D、百分位
例22 、一根竹竿长约1.56 m,那么它实际长度的范围是多少?
例2 、 下列说法正确的是( )
A、近似数25.0的精确度与近似数25的一样B、近似数0.230与近似数0.023的有效数字一样
C、近似数505与近似数0.505的有效数字一样 D、近似数4千万与近似数4000万的精确度一样
例3 、几位同学用最小刻 ( http: / / www.21cnjy.com )度是厘米的尺子,分别对一张桌子的边长进行测量,其结果分别如下:122.2 cm,122.2 cm,122.3 cm,132.2 cm,122.35 cm,其中四位同学对桌子的边长进行计算,你认为下列哪一个计算结果较合理( )
A、132.2 cm B、122.2 cm C、122.35 cm D、122.3 cm
题型3: 求近似数
例4、 用四舍五入法,按括号里的要求对下列各数取近似值:
(1)1.999(精确到0.01);
(2)0.03049(保留2个有效数字);
(3)67294(精确到万位);
(4)5864(保留2个有效数字)