中小学教育资源及组卷应用平台
北师大五年级上册第三单元倍数与因数(知识梳理+提高训练)一
知识点一:倍数与因数
1、倍数与因数的意义。
(1)如果a×b=c(A.B.c都是不为0的自然数),那么a和b就是c的因数,c就是a和b的倍数,倍数与因数是乘法算式中积和乘数的关系,是相互依存的,没有倍数就不存在因数,没有因数也不存在倍数,不能单独说一个数是倍数或因数。
(2)一个数的倍数大于或等于这个数的因数,一个数的因数小于或等于这个数的倍数。
(3)只在自然数(0除外)的范围内研究倍数和因数。
2、求一个数的倍数的方法。
用这个数分别乘1,2,3,4,…所得的积都是这个数的倍数。
3、判断两个数成倍数关系的方法。
(1)列乘法算式,用积判断。
(2)列除法算式,如果商是整数且没有余数就是倍数关系,反之不是。
知识点二:探索活动:2、5的倍数的特征
1、2的倍数的特征。
位上是0,2,4,6,8的数都是2的倍数。
2、5的倍数的特征。
个位上是0或5的数,都是5的倍数。判断一个数是不是5的倍数,就看这个数的个位上是不是0或5。
3、偶数和奇数。
像2,4,6,8,…这样的数,是2的倍数,叫作偶数。
像1,3,5,7,…这样的数,不是2的倍数,叫作奇数。
4、同时是2,5的倍数的特征。
个位上是0的数。
知识点三:探索活动:3的倍数的特征
1、一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
2、同时是2,3的倍数的特征。
个位上的数必须是0,2,4,6,8且各个数位上数字之和是3的倍数。
3、同时是3和5的倍数的特征。
个位上必须是0或5,且各个数位上数字之和是3的倍数。
4、同时是2、3、5的倍数的特征。
各个数位上数字之和是3的倍数,且个位上是0。
知识点四:找因数
1、找一个数的全部因数,看哪两个数相乘等于这个数,这两个数就是这个数的因数。
2、最小因数都是1。
3、最大因数是自己。
4、写出一个数的全部因数要按顺序从小到大写出,做到不重复,不遗漏。
5、因数在实际生活中应用很多,如装修房子时粘地板砖,需要 根据地板砖的大小计算粘几行、几列,学生们战队的时候要计算站几行,每行几人等。
知识点五:找质数
1、质数。
一个数只有1和它本身两个因数,这个数叫作质数。最小的质数是2。
2、一个数除了1和它本身以外还有别的因数,这个数叫作合数。最小的合数是4。
3、判断一个数是质数还是合数的方法:看这个数的因数的个数,只有2个因数的数是质数,有3个或3个以上因数的数是合数。
4、100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个。
一、选择题(共16分)
1.一个质数( )。
A.没有因数 B.只有一个因数
C.只有2个因数 D.有3个因数
2.如果一个数能被2整除,那么这个数一定是( )。
A.合数 B.偶数 C.奇数 D.质数
3.一个数的最小倍数是12,这个数的最大因数是( )。
A.1 B.6 C.12 D.24
4.妈妈买了5瓶同样的洗衣液,每瓶x元(x为自然数),妈妈可能花了( )元。
A.103 B.104 C.105 D.106
5.五(2)班有48名同学排队,要求每行的人数相同(不需有1人一行或者1人一列),有( )种排法。
A.4 B.5 C.8 D.10
6.在1,2,4,5,10,34,68,109这八个数中,偶数有( )个。
A.4 B.5 C.6 D.7
7.小华行李箱上密码锁的密码是1□44,这个数是3的倍数,她忘记了密码中的一个数字,这个密码一共有( )种可能。
A.2 B.4 C.3 D.5
8.一个三位数4□5,既是3的倍数也是5的倍数,□里可以填的数有( ) 种情况。
A.1 B.2 C.3 D.4
二、填空题(共16分)
9.五年级有48名同学报名参加植树活动,老师让他们自己分成人数相等的若干个小组,要求组数大于3,小于10,共有( )种分法。
10.在中,4和7是28的( ),28是4和7的( )。(填“因数”或“倍数”)
11.从0、5、8、7中选3个数字组成一个三位数,使它含有因数2、3、5,这些三位数中,最大的是( )。
12.哥德巴赫猜想提出,所有大于2的偶数都可以表示为两个质数的和。比如:4=2+2,6=3+3,8=5+3,10=7+3,…请你仿照填写:20=( )。
13.乐乐家的门牌号既是3的倍数又是5的倍数,而且是与403相邻的奇数,乐乐家的门牌号是( ),至少加上( )可使它的因数有2。
14.一块周长是36米的长方形菜地,长和宽均为整数米,且都为质数,则这块长方形菜地的占地面积最大是( )平方米,最小是( )平方米。
15.张华家无线网的密码是一个六位数。第一位数既是偶数又是质数,第二位数既是4的倍数又是4的因数,第三位数既是奇数又是合数,第四位数既不是质数也不是合数也不是0,第五位数是8的最小因数,最后一位数是最小的自然数。张华家无线网的密码是( )。
16.要使三位数71□同时是2和5的倍数,□里填的数字是( );要使三位数□53是3的倍数,□里可以填的数字有( )个。
三、判断题(共8分)
17.12的所有因数中,有3个质数。( )
18.找因数可以通过加减法进行寻找。( )
19.从383中至少减去1才能被3整除。( )
20.某食品超市原来有48瓶辣椒酱,已经卖出的瓶数是奇数,那么剩下的瓶数是偶数。( )
四、连线题(共6分)
21.(6分)连一连。
五、作图题(共6分)
22.(6分)请你在方格纸上画出所有面积是12cm 的长方形。(每个小方格的边长是1cm,长方形的边长是整厘米数。)
六、解答题(共48分)
23.(6分)舞蹈队有32名同学,要站成若干排表演,若每排人数相等,可以怎样站?(不包括每排一人或32人站一排的情况)写出所有站队的情况。
24.(6分)李伯伯家的一棵石榴树收获了76个石榴,他每5个装一袋,能正好装完吗?每2个装一袋,能正好装完吗?为什么?
25.(6分)李老师给小班小朋友分糖果,她拿了48颗糖果平均分给小朋友,正好分完,幼儿园小班可能有多少人?(人数大于10人)
26.(6分)张老师按从前往后的顺序说出了他的电话号码:①比最小质数与最小合数的积少2;②比最大的一位数少3;③比最小的奇数多2;④既不是质数也不是合数;⑤10以内既是合数又是奇数的数;⑥5的最大因数;⑦最小的质数。同学们,你知道张老师家的电话号码是多少吗?
27.(6分)张阿姨买回来18个水果,让乐乐把水果放入水果篮中,不可以一次放完,也不可以一个一个地放,并且每次放的个数要相同,放到最后正好一个不剩。乐乐有几种放法?每种放法每次各放几个水果?
28.(6分)一块长方形空地的周长是28米,它的长和宽都是整数米,且长是偶数,宽是质数,现在在这块空地内铺满草坪,铺草坪的面积是多少平方米?
29.(6分)张奶奶家摘了64个苹果,每5个装一袋,能正好装完吗?每2个装一袋,能正好装完吗?
30.(6分)一个三位数,百位上是最小的合数,十位上是最小的合数与最小的质数的商,个位上是最小的质数,写出这个三位数。
参考答案
1.C
【分析】一个自然数,只有1和它本身的两个因数的数是质数,据此判断即可。
【详解】根据分析可知,一个质数,只有2个因数。
故答案为:C
【点睛】本题考查质数的意义,根据质数的意义进行解答。
2.B
【分析】偶数的意义:能被2整除的数是偶数;奇数:不能被2整除的数是奇数;质数:1个数除了1和它本身,没有其它因数的数;合数:1个数除了1和它本身,还有其它因数的数,据此即可选择。
【详解】由分析可知:
一个数能被2整除,那么这个数是偶数。
故答案为:B
【点睛】本题主要考查质数、合数、奇数、偶数的意义,熟练掌握它们的意义并灵活运用。
3.C
【分析】根据因数和倍数的特征:
一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数;
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身,据此解答即可。
【详解】由分析可得:
一个数的最小倍数是12,则这个数是12,因为最大的因数是它本身,所以这个数的最大因数是12。
故答案为:C
【点睛】本题考查了求一个数最小倍数和最大因数的方法,明确一个数的最大因数和最小倍数都是这个数本身。
4.C
【分析】由题可知,每瓶洗衣液x元,(x为自然数),妈妈买了5瓶,共花了5x元;根据5的倍数特点,尾数是“0”或“5”的自然数是5的倍数,据此解答即可。
【详解】由分析可知:
5×x=5x
根据5的倍数特征,5x的尾数只能是“0”或“5”。
故答案为:C
【点睛】本题主要考查5的倍数特点。
5.C
【分析】把48名同学平均分成若干行,那么行数和每行的人数相乘的积是48,根据找因数的方法,可以一对一的找,有多少个因数就有多少种排法,再结合题目进行分析即可。
【详解】由分析可得:
48=1×48,即每行1人,排48行,不符合题意;或者每行48人,排1行,不符合题意。
48=2×24,即每行2人,排24行;或每行24人,排2行;
48=3×16,即每行3人,排16行;或每行16人,排3行;
48=4×12,即每行4人,排12行;或每行12人,排4行;
48=6×8,即每行6人,排8行;或每排8人,排6行。
所以共8种排法。
故答案为:C
【点睛】本题考查了找一个数因数的方法,解答此题的关键是把48分解因数,再对分解出来的因数结合题目进行分析,看是否需要排除。
6.B
【分析】能被2整除的数叫做偶数。偶数的个位上是0、2、4、6或8,据此解答。
【详解】根据偶数的特点,2、4、10、34、68是偶数,偶数有5个。
故答案为:B
【点睛】掌握偶数个位上的数的特点是解题的关键。
7.B
【分析】根据3的倍数的特征:各个数位上的数字之和是3的倍数;由此找出□内可能的数字。
【详解】□内如果是0;1+0+4+4=9;9能被3整数,是3的倍数,□内可能是0;
□内如果是1;1+1+4+4=10;10不能被3整除,不是3的倍数,□内不是1;
□内如果是2;1+2+4+4=11;11不能被3整除,不是3的倍数,□内不是2;
□内如果是3;1+3+4+4=12;12能被3整除,是3的倍数,□内可能是3;
□内如果是4;1+4+4+4=13;13不能被3整除,不是3的倍数,□内不是4;
□内如果是5;1+5+4+4=14;14不能被3整除,不是3的倍数,□内不是5;
□内如果是6;1+6+4+4=15;15能被3整除,是3的倍数,□内可能是6;
□内如果是7;1+7+4+4=16;16不能被3整除,不是3的倍数,□内不是7
□内如果是8;1+8+4+4=17;17不能被3整除,不是3的倍数,□内不是8;
□内如果是9;1+9+4+4=18;18能被3整除,是3 倍数,□内可能是9。
□内可能是0,3,6,9一共四种可能。
小华行李箱上密码锁的密码是1□44,这个数是3的倍数,她忘记了密码中的一个数字,这个密码一共有4种可能。
故答案为:B
【点睛】熟练掌握3的倍数特征是解答本题的关键。
8.D
【分析】同时是3、5的倍数的数的特征是这个数个位上的数字是0或5,所有数位上的数字之和是3的倍数。
【详解】4+5=9,那么□里可以填的数有0、3、6、9,共4种情况。
故答案为:D
【点睛】本题考查了3、5的倍数,掌握3和5的倍数特征是解题关键。
9.3/三
【分析】分析题目,分成人数相等的若干小组(组数大于3,小于10),需要找出48的因数中大于3小于10的因数,据此解答。
【详解】48大于3小于10的因数有:4、6、8,所以可以成分4组,每组12人;可以分成6组,每组8人;可以分成8组,每组6人;一共有3种分法。
【点睛】掌握找一个数的因数的方法是解答本题的关键。
10. 因数 倍数
【分析】在乘法算式a×b=c(a、b、c均为非0的自然数)中,a、b就是c的因数,c就是a、b的倍数。据此解答。
【详解】在4×7=28中,4和7是28的因数,28是4和7的倍数。
【点睛】掌握因数和倍数的意义是解题的关键。
11.870
【分析】根据题意,组成的三位数同时是2、3、5的倍数。同时是2、3、5的倍数的数的特征:个位上是0;各数位上的数字之和是3的倍数。据此列举出符合条件的三位数,再找出其中最大的数。
【详解】从0、5、8、7中选3个数字组成一个三位数,使它含有因数2、3、5,这些三位数有:570、750、870、780,其中最大的是870。
【点睛】掌握同时是2、3、5的倍数的数的特征是解题的关键。
12.3+17
【分析】在自然数中,除了1和它本身以外不再有其他因数,这样的数叫质数;除了1和它本身以外还有其它的因数,这样的数叫做合数;能被2整除的数是偶数;不能被2整除的数是奇数;据此解答。
【详解】由分析得:
20=3+17(答案不唯一)
【点睛】掌握质数和偶数的意义是解答本题的关键。
13. 405 1
【分析】个位是1、3、5、7、9的数都是奇数,与403相邻的奇数有两个,分别是401和405,即是3的倍数又是5的倍数,数的末尾是0或5,并且各数位数字相加之和是3的倍数。2的倍数特征:个位是0、2、4、6、8的数。
【详解】(1)4+0+5=9
9÷3=3
乐乐家的门牌号是405;
(2)405+1=406
至少加上1可使它的因数有2。
【点睛】此题主要考查学生对2、3、5的倍数特征的理解与实际灵活应用。
14. 77 65
【分析】根据长方形的周长=(长+宽)×2,那么长+宽=周长÷2,据此求出长与宽的和,长和宽均为整数米,且都为质数,根据质数的意义可以确定长和宽,然后根据长方形的面积=长×宽,把数据代入公式解答。
【详解】36÷2=18(米)
18=11+7=13+5
所以这个长方形的长和宽可能是长11米、宽7米,也可能是长13米、宽5米。
11×7=77(平方米)
13×5=65(平方米)
这块长方形菜地的占地面积最大是77平方米,最小是65平方米。
【点睛】此题主要考查长方形的周长公式、面积公式的灵活运用,质数的意义及应用,关键是熟记公式。
15.249110
【分析】除了1和它本身以外不再有其它因数,这样的数叫质数;除了1和它本身以外还有其它因数,这样的数叫合数。1既不是质数,也不是合数;
整数中,是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的是它本身,没有最大的倍数。
据此确定每一位上的数,再写出密码即可。
【详解】第一位数既是偶数又是质数,这个数是2;
第二位数既是4的倍数,又是4的因数,这个数是4;
第三位数既是奇数又是合数,这个数是9;
第三位数既不是质数,也不是合数也不是0,这个数是1;
第五位数是8的最小因数,8的最小因数是1,这个数是1;
第六位数是最小的自然数,最小的自然数是0,这个数是0。
张华家无限网密码是249110。
【点睛】关键是理解奇数、偶数、质数、合数的分类标准,理解因数、倍数的意义,2是质数中唯一的偶数。
16. 0 3
【分析】既是2的倍数又是5的倍数的特征:个位上的数字是0的数,既是2的倍数,又是5的倍数。
3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
【详解】5+3+1=9
5+3+4=12
5+3+7=15
9、12、15都是3的倍数,即□53的□中可以填1、4、7,共有3种填法。
所以,要使三位数71□同时是2和5的倍数,□里填的数字是0;要使三位数□53是3的倍数,□里可以填的数字有3个。
【点睛】熟练掌握2、3、5的倍数特征,是解答此题的关键。
17.×
【分析】一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。根据求一个数的因数的方法求出12的因数;再根据质数的意义,一个自然数如果只有1和它本身两个因数,这样的数叫做质数。据此解答即可。
【详解】12的因数有1、2、3、4、6、12。
在这些因数中质数有2和3两个。
因此题干中的结论是错误的。
故答案为:×
【点睛】此题考查的目的是理解掌握求一个数的因数的方法及应用,质数的意义及应用。
18.×
【分析】找一个因数的方法:把一个因数写出两个整数相乘的形式,这两个整数就是这个数的因数,根据此方法即可找出这个数的所有因数。
【详解】由分析可知:
找因数是通过乘法进行寻找,原题说法错误。
故答案为:×
【点睛】本题主要考查找因数的方法,学会找因数的方法并灵活运用。
19.×
【分析】根据3的倍数特征:各个数位上的数字相加的和是3的倍数,据此分析解答。
【详解】3+8+3=14,15是3的倍数,14+1=15,故383加上1才能被3整除;原题说法错误。
故答案为:×
【点睛】本题主要考查3的倍数特征:各个数位上的数字相加的和是3的倍数。
20.×
【分析】根据题意可知,原来的瓶数是偶数,已经卖出的瓶数是奇数,偶数-奇数=奇数,所以剩下的瓶数是奇数;据此解答即可。
【详解】由分析得:
某食品超市原来有48瓶辣椒酱,已经卖出的瓶数是奇数,那么剩下的瓶数是奇数。原题说法错误。
故答案为:×
【点睛】掌握奇数和偶数的运算性质是解题的关键。
21.见详解
【分析】根据因数与倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;一个数的因数的个数有限的,一个数的最小因数是1,最大因数是它本身,一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数;据此连线解答。
【详解】
【点睛】本题考查因数与倍数的意义,根据因数与倍数的意义,进行解答。
22.见详解
【分析】根据长方形的面积=长×宽,可知长方形的边长和宽是12的因数,由此找出长方形的长与宽即可。
【详解】12=1×12=2×6=3×4
所以长方形的长是12厘米、宽是1厘米或长是6厘米、宽是2厘米或长是4厘米、宽3厘米,画图如下:
【点睛】本题主要考查找因数的方法及画指定面积的长方形。
23.见详解
【分析】由于每排的人数×排数=总人数,由于总人数是32名同学,由此即可找出32的因数,不包括1排1人或32人一排的情况,据此即可解答。
【详解】由分析可知:
32=2×16=4×8
答:可以每排2人,站16排;每排16人,站2排;每排4人,站8排;每排8人,站2排。
【点睛】本题主要考查因数的找法,熟练掌握找因数的方法是解题的关键。
24.见详解
【分析】根据能被2整除的数的特征和能被5整除的数的特征进行解答。
【详解】76个石榴,每5个装一袋,不能正好装完;每2个装一袋,能正好装完;因为76不是5的倍数,是2的倍数。
【点睛】此题考查的是能被2和5整除的数的特征的知识的应用。
25.可能有48人、24人、16人或12人
【分析】根据题意,找出48内,大于10的因数,即可解答。
【详解】48的因数:1,2、3、4、6、8、12、16、24、48
幼儿园小班人数可能有12人、16人、24人、48人。
答:幼儿园小班可能有12人、16人、24人、48人。
【点睛】本题考查因数求法,根据题意进行解答。
26.6631952
【分析】根据质数、合数、奇数、因数等意义,找出每个数位上的数字即可。
【详解】①最小的质数是2,最小的合数是4,
它们的积是:
2×4=8
所以第一位上的数字是:
8-2=6
②最大的一位数是9,
所以第二位上的数字是:
9-3=6
③最小的奇数是1,
所以第三位上的数字是:
1+2=3
④既不是质数也不是合数是1;
⑤10以内既是合数又是奇数的数是9;
⑥5的最大因数是5;
⑦最小的质数是2;
综上所述,电话号码为6631952。
答:张老师家电话号码是6631952。
【点睛】解答此题的关键是要明确电话号码中每一位上的数字都是一位数,且要熟记一些特殊的数字:1既不是质数也不是合数,9是奇数也是合数以及奇数、合数、质数的含义。
27.4种;每次放2个或每次放3个或每次放6个或每次放9个
【分析】要使每次拿的个数相同,拿到最后正好一个也不剩,说明每次拿出的个数都是18的因数(除了1和18),由此求解。
【详解】18=2×9=3×6
那么18的因数(除了1和18)为:2、3、6、9,所以共有4个因数,不可以一次放完,也不可以一个一个地放,并且每次放的个数要相同,放到最后正好一个不剩的方法共有4种:每次放2个或每次放3个或每次放6个或每次放9个。
答:4种。每次放2个或每次放3个或每次放6个或每次放9个。
【点睛】本题先把实际问题转化成数学问题,正好拿完,就没有余数,每次拿的个数就是18的因数(除了1和18),再根据求因数的方法求解。
28.24平方米
【分析】长方形周长公式:周长=(长+宽)×2,长+宽=周长÷2,代入数据,求出长+宽的和,即28÷2=14米;找出14以内的偶数和质数,而且偶数与质数的和等于14,求出长方形的长和宽,再根据长方形面积公式:面积=长×宽;代入数据,即可解答。
【详解】28÷2=14(米)
14以内的偶数有:0、2、4、6、8、10、12、14
14以内的质数有:2、3、5、7、11、13
只有12+2=14
长方形的长是12米,宽是2米。
12×2=24(平方米)
答:铺草坪的面积是24平方米。
【点睛】本题考查偶数、质数的意义以及长方形周长公式和面积公式的应用,关键是熟记公式,灵活运用。
29.每5个装一袋,不能正好装完;每2个装一袋,能正好装完
【分析】根据2的倍数特征:个位上是0、2、4,6,8的数都是2的倍数;5的倍数特征:个位上的数是0或5的数,是5的倍数,再根据能被2,5整除的数的特征进行判断是否正好整完。
【详解】64÷5=12(袋)……4(个),64不能被5整除,不是5的倍数,不能正好装完;
64÷2=32(袋),64能被2整数,是2的倍数,能装好装完。
答:每5个装一袋,不能正好装完,每2个装一袋,能正好装完。
【点睛】熟练掌握2、5的倍数特征是解答本题的关键。
30.422
【分析】一个数,除了1和它本身,还有其他因数的数,叫做合数,最小的合数是4;一个数,只要1和它本身两个因数,这样的数叫做质数,最小的质数是2,据此解答。
【详解】最小的合数是4,百位上的数是4;
4÷2=2;十位上的数是2;
最小的质数是2,个位上的数是2。
这个数是422。
答:这个三位数是422。
【点睛】熟练掌握质数和合数的意义是解答本题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)