第六章检测题(后附答案)
(时间:100分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )
A.条形统计图 B.频数直方图 C.折线统计图 D.扇形统计图
2.已知一列数据:27,12,12,5,7,12,5.该列数据的众数是( )
A.27 B.12 C.7 D.5
3.小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为( )
A.7分 B.8分 C.9分 D.10分
4.已知一组数据5,8,8,9,10,以下说法错误的是( )
A.平均数是8 B.众数是8 C.中位数是8 D.方差是8
5.一组数据1,2,1,4的方差为( )
A.1 B.1.5 C.2 D.2.5
6.甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是( )
A.甲的射击成绩比乙的射击成绩更稳定
B.甲射击成绩的众数大于乙射击成绩的众数
C.甲射击成绩的平均数大于乙射击成绩的平均数
D.甲射击成绩的中位数大于乙射击成绩的中位数
7.小明同学对数据12,22,36,4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是( )
A.平均数 B.标准差 C.方差 D.中位数
8. 袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为s甲2=186.9,s乙2=325.3.为保证产量稳定,适合推广的品种为( )
A.甲 B.乙 C.甲、乙均可 D.无法确定
9.某公司生产了A,B,C,D四种型号的帐篷共20000顶,有关信息如统计图,下列判断正确的是( )
A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍
B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍
C.单独生产A型帐篷与单独生产D型帐篷的天数相等
D.每天单独生产C型帐篷的数量最多
10.下表是抽查的某班10名同学中考体育测试成绩统计表.
成绩(分) 30 25 20 15
人数(人) 2 x y 1
若成绩的平均数为23,中位数是a,众数是b,则a-b的值是( )
A.-5 B.-2.5 C.2.5 D.5
二、填空题(每小题3分,共15分)
11.某中学在一次田径运动会上,参加女子跳高的7名运动员的成绩如下(单位:m):1.20,1.25,1.10,1.15,1.35,1.30,1.30.这组数据的中位数是__ __.
12.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是__ _分.
13.某芭蕾舞团新进一批女演员,她们的身高及其对应人数情况如表所示:
身高(cm) 163 164 165 166 168
人数 1 2 3 1 1
那么,这批女演员身高的方差为__ __.
14.甲、乙两队参加“传承红色基因,推动绿色发展”为主题的合唱比赛,每队均由20名队员组成.其中两队队员的平均身高为x甲=x乙=160 cm,身高的方差分别为s甲2=10.5,s乙2=1.2.如果单从队员的身高考虑,你认为演出形象效果较好的队是__ __.(填“甲队”或“乙队” )
15.根据统计图,回答问题:该超市10月份的水果类销售额__ __11月份的水果类销售额(请从“>”“=”“<”中选一个填空).
三、解答题(共75分)
16.(8分)学校广播站要招收一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:
项目
选手 形象 知识面 普通话
李文 70 80 88
孔明 80 75 x
(1)计算李文同学的总成绩;
(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?
17.(9分)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如表:
序号 1 2 … 25 26 … 50 51 … 75 76 … 99 100
月均用水量/t 1.3 1.3 … 4.5 4.5 … 6.4 6.8 … 11 13 … 25.6 28
(1)求这组数据的中位数.已知这组数据的平均数为9.2 t,你对它与中位数的差异有什么看法?
(2)为了鼓励节约用水,要确定一个月均用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?
18.(9分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为__ __,图①中m的值为__ _;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
19.(9分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的
篇数(篇) 3 4 5 6 7及以上
人数(人) 20 28 m 16 12
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.
20.(9分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:
(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量;
(2)求小聪成绩的方差;
(3)现求得小明成绩的方差为s小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.
21.(10分)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5 kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:
4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.7
4.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.7 5.0
整理数据:
质量(kg) 4.5 4.6 4.7 4.8 4.9 5.0
数量(箱) 2 1 7 a 3 1
分析数据:
平均数 众数 中位数
4.75 b c
(1)直接写出上述表格中a,b,c的值;
(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?
(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)
22.(10分)宁夏某枸杞育种改良试验基地对新培育的甲、乙两个品种各试种一亩,从两块试验地中各随机抽取10棵,对其产量(千克/棵)进行整理分析.下面给出了部分信息:
甲品种:2.0,3.2,3.1,3.2,3.1,2.5,3.2,3.6,3.8,3.9
乙品种:如图所示
平均数 中位数 众数 方差
甲品种 3.16 a 3.2 0.29
乙品种 3.16 3.3 b 0.15
根据以上信息,完成下列问题:
(1)填空:a=__ __,b=__ __;
(2)若乙品种种植300棵,估计其产量不低于3.16千克的棵数;
(3)请从某一个方面简要说明哪个品种更好.
23.(11分)某校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:
众数 中位数 方差
八年级竞赛成绩 7 8 1.88
九年级竞赛成绩 a 8 b
(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;
(2)请根据图表中的信息,回答下列问题.
①表中的a=__ __,b=__ __;
②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?
(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?
答案:
第六章检测题
(时间:100分钟 满分:120分)
1.( D )
2.( B )
3.( C )
4.( D )
5.( B )
6.( A )
7.( D )
8.( A )
9.( C )
10.( C )
11.__1.25__.
12.__87.4__分.
13.__2__.
14.__乙队__.
15.__>__
16.
解:(1)70×10%+80×40%+88×50%=83(分),即李文同学的总成绩为83分
(2)当两人成绩相等时,则80×10%+75×40%+x×50%=83,∴x=90,即若孔明同学的总成绩要超过李文同学,则他的普通话成绩x应超过90分
17.
解:(1)共有100个数,按大小顺序排列后第50,51个数据分别是6.4,6.8,所以中位数为:(6.4+6.8)÷2=6.6(t);已知这组数据的平均数为9.2 t,∴从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费 (2)∵100×75%=75,第75个家庭去年的月均用水量为11 t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,家庭月均用水量应该定为11 t.答:这个标准应该定为11 t
18.
(1)本次接受调查的跳水运动员人数为__40人__,图①中m的值为__30__;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
解:(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15
19.
解:(1)被调查的总人数为16÷16%=100(人),m=100-(20+28+16+12)=24 (2)由于共有100个数据,中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇 (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×=224(人)
20.
解:(1)应选择平均数,小聪、小明的平均数分别是8,8 (2)小聪成绩的方差为:[(7-8)2+(8-8)2+(7-8)2+(10-8)2+(7-8)2+(9-8)2]= (3)小聪同学的成绩较好,理由:由(1)可知两人的平均数相同,因为小聪成绩的方差小于小明成绩的方差,成绩相对稳定.故小聪同学的成绩较好
21.
解:(1)a=6,b=4.7,c=4.75 (2)答案不唯一,如选择众数4.7,这2000箱荔枝共损坏了2000×(5-4.7)=600(千克) (3)10×2000×5÷(2000×5-600)≈10.7(元),答:该公司销售这批荔枝每千克定为10.7元才不亏本
22.
根据以上信息,完成下列问题:
(1)填空:a=__3.2__,b=__3.5__;
(2)若乙品种种植300棵,估计其产量不低于3.16千克的棵数;
(3)请从某一个方面简要说明哪个品种更好.
解:(1)把甲品种的产量从小到大排列:2.0,2.5,3.1,3.1,3.2,3.2,3.2,3.6,3.8,3.9,中位数是=3.2,乙品种的产量3.5千克的最多有3棵,所以众数为3.5.故答案为:3.2,3.5 (2)300×=180(棵).答:估计其产量不低于3.16千克的有180棵 (3)因为甲、乙两种品种的平均数相同,但甲品种的方差为0.29,大于乙品种的方差0.15,所以乙品种更好,产量稳定
23.
(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;
(2)请根据图表中的信息,回答下列问题.
①表中的a=__8__,b=__1.56__;
②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?
(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?
解:(1)由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好
(2)①九年级竞赛成绩中8分出现的次数最多,故众数a=8;九年级竞赛成绩的方差为:s2=×[8×(6-8)2+9×(7-8)2+14×(8-8)2+13×(9-8)2+6×(10-8)2]=1.56,故答案为:8;1.56
②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖;综上所述,应该给九年级颁奖
(3)八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高