《3.2 解一元一次方程(一)—— 合并同类项与移项》同步练习
(课时1 用合并同类项解一元一次方程)
知识点1 解一元一次方程——合并同类项
1. 对于方程2y+3y-4y=1,合并同类项正确的是 ( )
A.y=1 B.-y=1
C.9y=1 D.-9y=1
2. 解下列方程时,合并同类项不正确的是 ( )
A.5x-4x=1,合并同类项,得x=1
B.3x-5x=-2,合并同类项,得-2x=-2
C.2x-3x-4x=1,合并同类项,得x=1
D.x+x=2,合并同类项,得x=2
3. 方程-x-3x=-1的解为 ( )
A.x=-3 B.x=-
C.x=3 D.x=
4. 若-2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为 ( )
A.-1,2 B.-2,-1
C.2,-1 D.-2,1
5. 已知式子3-4y与2y-3的和为-1,则y的值为 .
6. 在有理数范围内定义一种新运算“ ”,其运算规则为a b=-2a+3b.如1 5=-2×1+3×5=13,则x 4x=20的解为 .
7. 解下列方程:
(1)-3x+6x=18;
(2)2x-7x+8x=9-12+1;
(3)x-x+x+2x=5.
知识点2 列一元一次方程解决实际问题
8. 有一列数,按一定的规律排列成,-1,3,-9,27,-81, .若其中某三个相邻数的和是-567,则这三个数中第一个数是 .
9. 《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰: “我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半.”按此说法,羊的主人应当赔偿给禾苗的主人
斗粟米.
10. 甲、乙、丙三个仓库共储煤228吨,已知甲、乙两仓库储煤量之比是2∶7,乙、丙两仓库储煤量之比是3∶7,则这三个仓库各储煤多少吨
11. 一个两位数,十位数字是个位数字的2倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.
参考答案
1.A
2.C 【解析】 C项,合并同类项,得-5x=1.故选C.
3.B 【解析】 合并同类项,得-x=,系数化为1,得x=-.故选B.
4.C 【解析】 因为-2x2m+1y6与x3m-1y10+4n是同类项,所以2m+1=3m-1,6=10+4n,解得m=2,n=-1.故选C.
5. 【解析】 由题意,得3-4y+2y-3=-1,合并同类项,得-2y=-1,系数化为1,得y=.
6.x=2 【解析】 根据题意,知x 4x=-2×x+3×4x=20,合并同类项,得10x=20,系数化为1,得x=2.故x 4x=20的解为x=2.
7.【解析】 (1)合并同类项,得3x=18,
系数化为1,得x=6.
(2)合并同类项,得3x=-2,
系数化为1,得x=-.
(3)合并同类项,得2x=5,
系数化为1,得x=.
8.-81 【解析】 设这三个数中的第一个数为x,则另外两个数分别为-3x,9x,根据题意,得x-3x+9x=-567,解得x=-81,所以这三个数中第一个数是-81.
9. 【解析】 设羊的主人应当赔偿给禾苗的主人x斗粟米,则可列方程为x+2x+4x=5,解得x=,故羊的主人应当赔偿给禾苗的主人斗粟米.
10.【解析】 因为甲∶乙=2∶7=6∶21,乙∶丙=3∶7=21∶49,
所以甲∶乙∶丙=6∶21∶49.
设甲仓库储煤6x吨,则乙仓库储煤21x吨,丙仓库储煤49x吨.
根据题意,得6x+21x+49x=228.
解得x=3.
所以6x=18,21x=63,49x=147.
答:甲仓库储煤18吨,乙仓库储煤63吨,丙仓库储煤147吨.
11.【解析】 设这个两位数的个位数字为x,则十位数字为2x,
所以原两位数为10×2x+x,新两位数为10x+2x,
根据题意,得(10×2x+x)-(10x+2x)=27,
解得x=3,所以2x=6.
答:这个两位数为63.