2023—2024学年人教版数学九年级上册23.1 图形的旋转 基础巩固卷(含答案)

文档属性

名称 2023—2024学年人教版数学九年级上册23.1 图形的旋转 基础巩固卷(含答案)
格式 docx
文件大小 286.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-10-07 15:31:14

图片预览

文档简介

2023年人教版数学九年级上册
《23.1 图形的旋转》基础巩固卷
一 、选择题
1.下列运动属于旋转的是(  )
A.足球在草地上滚动 B.火箭升空的运动
C.汽车在急刹车时向前滑行 D.钟表的钟摆动的过程
2.我们知道,国旗上的五角星是旋转对称图形,它旋转与自身重合时,至少需要旋转(  )
A.36° B.60° C.45° D.72°
3.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C.若AC⊥A′B′,则∠A等于( )
A.50° B.60° C.70° D.80°
4.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
5.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是( )
A.60° B.90° C.120° D.150°
6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )
A.正方形 B.正六边形 C.五角星 D.圆
7.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
8.如图,△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,下列说法中不正确的是( )
A.线段AB与线段CD互相垂直
B.线段AC与线段CE互相垂直
C.点A与点E是两个三角形的对应点
D.线段BC与线段DE互相垂直
9.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.
则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )
A.(5,2) B.(2,5) C.(2,1) D.(1,2)
二 、填空题
11.将一个正六边形绕着其中心旋转,至少旋转   度可以和原来的图形重合.
12.△ABC在平面直角坐标系中的位置如图所示,将△ABC绕点A顺时针旋转90°得到△AB'C′,则点B的对应点B'的坐标为   .
13.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是   度.
14.将图(1)中的大正方形绕着其中心顺时针至少旋转   度时,可变成图(2).
15.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为   .
16.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形是图   (填①、②、③、④)
三 、作图题
17.如图,正方形网格中,每个小正方形边长都是1,在直角坐标系中,△ABC的三个顶点分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).
(1)画出△ABC关于y轴对称的△A1B1C1,直接写出A1的坐标  .
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2.
四 、解答题
18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
19.如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180° 得到△DEC.
(1)试猜想AE与BD有何关系?并且直接写出答案.
(2)若△ABC的面积为4cm2,求四边形ABDE的面积;
(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.
20.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段DC= ;
(2)求线段DB的长度.
21.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).
(1) 请按要求画图;
①画出△ABC向左平移5个单位长度后得到的△A1B1C1;
②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2;
(2) 请写出直线B1C1与直线B2C2的交点坐标.
22.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①的方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′交于点O.
(1) 求证:△BCE≌△B′CF;
(2) 当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.
23.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.
(1)求证:EF=MF;
(2)当AE=1时,求EF的长.
答案
1.D
2.D
3.A
4.B
5.D
6.D;
7.C
8.C
9.D
10.A
11.答案为:60.
12.答案为:(4,0).
13.答案为:90°;
14.答案为:270.
15.答案为:3
16.答案为:②.
17.解:(1)如图,△A1B1C1为所作,A1的坐标为(﹣2,﹣4);
(2)如图,△A2B2C2为所作.
18.(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°﹣∠ACD=∠FCE,
在△BCD和△FCE中,

∴△BCD≌△FCE(SAS).
(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,
∵EF∥CD,
∴∠E=180°﹣∠DCE=90°,
∴∠BDC=90°.
19.解:(1)AE∥BD,且AE=BD;
(2)四边形ABDE的面积是:4×4=16;
(3)AC=BC.理由是:∵AC=CD,BC=CE,
∴四边形ABDE是平行四边形.
∵AC=BC,
∴平行四边形ABDE是矩形.
20.解:(1)∵AC=AD,∠CAD=60°,
∴△ACD是等边三角形,
∴DC=AC=4.
故答案是:4;
(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=2,
∴BE=BC﹣CE=3﹣2=.
∴Rt△BDE中,BD===.
21.解:(1)①△A1B1C1如图所示
②△A2B2C2如图所示 
(2)观察图形可知:交点坐标为(-1,-4)
22.解:(1)证明:因为∠B=∠B′,BC=B′C,
∠BCE=∠BCA-∠ACE=∠B′CA′-∠ACE=∠B′CF,
所以△BCE≌△B′CF 
(2)AB与A′B′垂直.理由如下:
若旋转角等于30°,即∠ECF=30°,所以∠FCB′=60°.
又因为∠B=∠B′=60°,
根据四边形的内角和可知∠BOB′的度数为360°-60°-60°-150°=90°,
所以AB与A′B′垂直
23.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,
∴DE=DM,∠EDM=90°,
∵∠EDF=45°,∴∠FDM=45°,
∴∠EDF=∠FDM.
又∵DF=DF,DE=DM,
∴△DEF≌△DMF,∴EF=MF;
(2)解:设EF=MF=x,
∵AE=CM=1,AB=BC=3,
∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,
∴BF=BM-MF=4-x.
在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
即22+(4-x)2=x2,x=2.5.
所以EF=2.5.