4.4解直角三角形的应用同步练习2023—2024学年湘教版数学九年级上册(无答案)

文档属性

名称 4.4解直角三角形的应用同步练习2023—2024学年湘教版数学九年级上册(无答案)
格式 docx
文件大小 1.4MB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2023-10-07 16:09:11

图片预览

文档简介

2023-2024学年湘教版九年级数学上册
4.4解直角三角形的应用同步练习
一、单选题
1.如图是某商场营业大厅自动扶梯示意图. 自动扶梯的长为,倾斜角为α,则自动扶梯的垂直高度等于( )
A. B. C. D.
2.小柠同学想要测量一颗树的高.如图,她站在与树相距远的C处测得在此处观测树顶A的仰角,若小柠同学的眼睛D距离地面,则这颗树的高约为( )
(参考数据:)
A.3.4 B.3.64 C.5.16 D.5.6
3.随着光伏发电项目投资成本下降,越来越多的“光伏+”项目正在逐步走进我们的生活.光伏发电不仅能为城市提供清洁能源,还能减少城市污染和能源消耗.如图,长、宽的太阳能电池板与水平面成夹角,经过太阳光的正投影,它在水平面所形成的阴影的面积为(  )
A. B. C. D.
4.一沙滩球网支架示意图如图所示,米,,则最高点A离地面的高度为( )
A.米 B.米 C.米 D.米
5.在综合实践课上,某班同学测量校园内一棵树的高度.如图,测量仪在A处测得树顶D的仰角为45°,在C处测得树顶D的仰角为37°(点A、B、C在同一条水平主线上),已知测量仪的高度米,米,则树BD的高度是( )【参考数据:,,】
A.12米 B.12.65米 C.13米 D.13.65米
6.如图,、表示两栋楼房,则下列说法正确的是( )
A.两楼之间的距离是 B.从点看点的仰角是
C.从点看点的仰角是 D.从点看点的俯角是
7.如图,河堤的堤高米,迎水坡的坡比是,则河堤底的宽度的长为( )
A.米 B.米 C.米 D.米
8.如图,小聪在一幢楼的楼顶点处,以的俯角看到一盏路灯的底部点,小辉在这幢楼的点处,以的俯角看到这盏路灯的底部点.路灯到楼的距离米,点在同一直线上.已知,,,,,.则小聪和小辉所在测量位置之间的距离约为( )
A.4.5米 B.9.1米 C.10.5米 D.14.7米
二、填空题
9.图1是某种路灯的实物图片,图2是该路灯的平面示意图,为立柱的一部分,灯臂,支架与支柱分别交于A,B两点,灯臂与支架交于点C,已知,, ,则支架的长为 .

10.如图,某数学兴趣小组为测量教学楼的高,先在A处用高1.5米的测角仪测得教学楼顶端D的仰角为30°,再向前走30米到达B处,又测得教学楼顶端D的仰角为60°,A、B、C三点在同一水平线上,则教学楼的高为 米(结果保留根号).
11.如图,甲乙两座建筑物的水平距离为,从A点测得D点的俯角为,测得C点的俯角为,则乙建筑物的高度是 m(结果根据“四舍五入”法保留整数).(参考数据:,)

12.如图所示是某商场自动扶梯的示意图.自动扶梯的倾斜角为30°,在自动扶梯下方地面处测得扶梯顶端的仰角为60°,若测得、之间的距离为6m,则自动扶梯的垂直高度 m(精确到0.01)(参考数据:,).

13.如图是梅华中学校门口的双翼闸机,当它的双翼完全打开时,双翼边缘点A与B之间的距离为,,.当双翼收起时,可以通过闸机的物体的最大宽度为 .

14.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入,图2是它的平面示意图,请根据图中的信息求容器中牛奶的高度CF为 cm.

三、解答题
15.如图,校园内有块三角形土地,其中,,学校准备向边的外围拓展得到三角形地块,要求点、、在同一条直线.经测量,,求扩充部分的地块的面积.(结果精确到,参考数据:,,,

16.(1)如图,射线与直线垂直相交,交点为,且,,请你在直线和射线上找出一点,使得为等腰三角形,请用尺规作图,在图中作出所有满足条件的点用,,表示;保留作图痕迹,不必写作法
(2)如图,平地上一幢建筑物与铁塔相距50m,在建筑物的顶部处测得铁塔顶部的仰角为,铁塔底部的俯角为,求铁塔的高度.参考数据:,,,,,

17.图1是郑州市北龙湖的“鼎桥”示意图,“鼎”形结构寓意鼎盛中原,展现了郑州厚重的地域文化.某校数学社团使用皮尺和自制的测角仪测量“鼎桥”的高度.如图2,他们在点M处架设测角仪测得“鼎桥”最高点A的仰角为22°,然后沿方向前进153m到达点N处,又测得最高点A的仰角为45°.已知测角仪的高度为m,测量点M,N与大桥的底部B在同一水平线上,求“鼎桥”的高度.(结果精确到小数点后一位.参考数据:,,,)
18.蒙城涡河五桥横跨涡河南北,为蒙改城标志建筑之一,图1是大桥的实物图,图2是建造大桥设计平面图一部分,平面图纸有桥护栏米,拉索与护栏的夹角是,拉索与护栏的夹角是,两拉索底端距离为,两拉索顶端的距离,请求出立柱的长(,).
19.如图,三角形花园紧邻湖泊,四边形是沿湖泊修建的人行步道,经测量,点C在点A的正东方向,米,点E在点A的正北方向,点B,D在点C的正北方向,米,点B在点A的北偏东,点D在点E的北偏东.

(1)求步道的长度(精确到个位);
(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:,)
20.位于太原五一南广场的雕塑《力量》成为展示红色太原、英雄城市的又一载体.周末某校“综合与实践”小组的同学们,利用自制的测量工具测量该雕塑的高.雕塑的基座分步台阶,经测量每步台阶高.他们在处利用测角仪测得最高点的仰角,向前移动到点,,在处测得最高点的仰角,测角仪与地面保持垂直,且距地面均为.请根据以上数据求雕塑的高 .(结果精确到,,,,)