扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 函数的和、差、积、商的导数 课型 新授
教学目的:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3.能够综合运用各种法则求函数的导数 教学重点:用定义推导函数的和、差、积、商的求导法则教学难点:函数的积、商的求导法则的推导. 授课类型:新授课
教学过程 备课札记
一、复习引入: 常见函数的导数公式:;(k,b为常数) ; ; 二、讲解新课:例1.求的导数.法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 法则2常数与函数的积的导数,等于常数与函数的积的导数.法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 证明:令,则- -+-, +因为在点x处可导,所以它在点x处连续,于是当时,,从而+ ,法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即三、讲解范例:例1 求下列函数的导数1、y=x2+sinx的导数.2、求的导数.(两种方法) 3、求下列函数的导数 ⑴ ⑵4、y=5x10sinx-2cosx-9,求y′5、求y=的导数.变式:(1)求y=在点x=3处的导数.(2) 求y=·cosx的导数.例2求y=tanx的导数.例3求满足下列条件的函数(1) 是三次函数,且(2)是一次函数, 变式:已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式四、课堂练习:1.求下列函数的导数:(1)y= (2)y= (3)y=五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则()′=(v≠0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 函数的最大值与最小值(1) 课型 新授
教学目的:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程 备课札记
一、预习作业: (1)求f (x) = x2 – 4 x + 3 在区间[ --1 ,4]上的极大值与极小值,并求f (-1),f (4),f (2)(2)若在(--1 ,4),能否求到求f (-1),f (4) 二、知识点梳理:1.函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小值.说明:⑴在开区间内连续的函数不一定有最大值与最小值.⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个三、典型例题:例1求函数在区间上的最大值与最小值例2求函数在区间上的最大值与最小值例3、已知函数f(x) = (1)求f(x)的单调递减区间(2)若f(x)在区间上的最大值为20,求它在该区间上的最小值?
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 导数在实际生活中的应用(2) 课型 新授
教学目标 1.通过生活中优化问题的学习,体会导数在解决设计问题中的作用 2.通过对实际问题的研究,促进学生分析问题,解决问题的能力教学重点 如何建立数学模型来解决实际问题教学难点 如何建立数学模型来解决实际问题
教学过程 备课札记
一.基础知识梳理:1 解决实际应用问题时,要把问题中所涉及的几个变量转化函数关系式,这需要通过分析,联想,抽象和转化完成,函数的最值要由极值和端点的函数值确定,当定义域是开区间且函数只有一个极值时,这个极值就是它的最值。2.实际应用问题的解题程序: 读题 建模 求解 反馈二、讲解范例:例1:.把长60cm的铁丝围成矩形,当长,宽各为多少时,矩形面积最大?例2:用长为14.8的钢条制作弄个长方体容器的框架,如果所制容器的一边长为0.5,那么高为多少时容器的容积最大?并求出它的最大值例3在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。(1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)(2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大?变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.解:收入,利润令,即,求得唯一的极值点答:产量为84时,利润L最大五、课后作业:1.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?解:(1)正方形边长为x,则V=(8-2x)·(5-2x)x=2(2x3-13x2+20x)(0知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 函数的极值(1) 课型 新授
教学目的:1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值.3.掌握求可导函数的极值的步骤教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪
教学过程 备课札记
一. 知识回顾:用导数法求下列函数的单调区间.(1) (2)二、讲解新课:1.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点3.极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4. 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5. 求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数(2)求方程=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值三、讲解范例:例1求y=x3-4x+的极值解:y′=(x3-4x+)′=x2-4=(x+2)(x-2) 令y′=0,解得x1=-2,x2=2当x变化时,y′,y的变化情况如下表-2(-2,2)2+0-0+↗极大值↘极小值↗∴当x=-2时,y有极大值且y极大值=当x=2时,y有极小值且y极小值=-5四、课堂练习:1.求下列函数的极值.(1)y=x2-7x+6 (2)y=x3-27x(1)解:y′=(x2-7x+6)′=2x-7令y′=0,解得x=.当x变化时,y′,y的变化情况如下表.-0+↘极小值↗∴当x=时,y有极小值,且y极小值=-(2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3)令y′=0,解得x1=-3,x2=3.当x变化时,y′,y的变化情况如下表-3(-3,3)3+0-0+↗极大值54↘极小值-54↗∴当x=-3时,y有极大值,且y极大值=54当x=3时,y有极小值,且y极小值=-542 已知函数 ,当x=1时,函数取极大值3,则a=____,b=______.变式:已知函数 时都取得极值,则a=____,b=______.思考交流:导数值为0的点是该点为极值点的______________条件.五、小结 :函数的极大、极小值的定义以及判别方法.求可导函数f(x)的极值的三个步骤.还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点 六、课后作业:
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 函数的单调性 课型 新授
教学目的:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法教学重点:利用导数判断函数单调性教学难点:利用导数判断函数单调性授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪
教学过程 备课札记
一、复习引入: 1. 常见函数的导数公式:; ; ; ; ; ; 2.法则1 .法则2 , 法则3 二、讲解新课:1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数的图像可以看到:y=f(x)=x2-4x+3切线的斜率f′(x)(2,+∞)增函数正>0(-∞,2)减函数负<0在区间(2,+∞)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即>0时,函数y=f(x) 在区间(2,+∞)内为增函数;在区间(-∞,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即0时,函数y=f(x) 在区间(-∞,2)内为减函数.定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内<0,那么函数y=f(x) 在为这个区间内的减函数 2.用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x).②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间.三、讲解范例:例1确定函数f(x)=x2-2x+4在哪个区间内是增函数, 哪个区间内是减函数.解:f′(x)=(x2-2x+4)′=2x-2.令2x-2>0,解得x>1.∴当x∈(1,+∞)时,f′(x)>0,f(x)是增函数.令2x-2<0,解得x<1.∴当x∈(-∞,1)时,f′(x)<0,f(x)是减函数. 例2确定函数f(x)=2x3-6x2+7在哪个区间内是增函数, 哪个区间内是减函数.解:f′(x)=(2x3-6x2+7)′=6x2-12x令6x2-12x>0,解得x>2或x<0∴当x∈(-∞,0)时,f′(x)>0,f(x)是增函数.当x∈(2,+∞)时,f′(x)>0,f(x)是增函数.令6x2-12x<0,解得0<x<2.∴当x∈(0,2)时,f′(x)<0,f(x)是减函数. 例3证明函数f(x)=在(0,+∞)上是减函数.证法一:(用以前学的方法证)任取两个数x1,x2∈(0,+∞)设x1<x2.f(x1)-f(x2)=∵x1>0,x2>0,∴x1x2>0∵x1<x2,∴x2-x1>0, ∴>0∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)= 在(0,+∞)上是减函数.证法二:(用导数方法证)∵=()′=(-1)·x-2=-,x>0,∴x2>0,∴-<0. ∴,∴f(x)= 在(0,+∞)上是减函数.点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性.例4确定函数的单调减区间例5已知函数y=x+,试讨论出此函数的单调区间.解:y′=(x+)′=1-1·x-2=令>0. 解得x>1或x<-1.∴y=x+的单调增区间是(-∞,-1)和(1,+∞).令<0,解得-1<x<0或0<x<1.∴y=x+的单调减区间是(-1,0)和(0,1)四、课堂练习:1.确定下列函数的单调区间(1)y=x3-9x2+24x (2)y=x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的单调减区间是(2,4)(2)解:y′=(x-x3)′=1-3x2=-3(x2-)=-3(x+)(x-)令-3(x+)(x-)>0,解得-<x<.∴y=x-x3的单调增区间是(-,).令-3(x+)(x-)<0,解得x>或x<-.∴y=x-x3的单调减区间是(-∞,-)和(,+∞)2.讨论二次函数y=ax2+bx+c(a>0)的单调区间.解:y′=(ax2+bx+c)′=2ax+b, 令2ax+b>0,解得x>-∴y=ax2+bx+c(a>0)的单调增区间是(-,+∞)令2ax+b<0,解得x<-.∴y=ax2+bx+c(a>0)的单调减区间是(-∞,-)3.求下列函数的单调区间(1)y= (2)y= (3)y=+x(1)解:y′=()′=∵当x≠0时,-<0,∴y′<0.∴y=的单调减区间是(-∞,0)与(0,+∞)(2)解:y′=()′当x≠±3时,-<0,∴y′<0.∴y=的单调减区间是(-∞,-3),(-3,3)与(3,+∞).(3)解:y′=(+x)′.当x>0时+1>0,∴y′>0. ∴y=+x的单调增区间是(0,+∞) 五、小结 : f(x)在某区间内可导,可以根据>0或<0求函数的单调区间,或判断函数的单调性,或证明不等式.以及当=0在某个区间上,那么f(x)在这个区间上是常数函数 六、课后作业:
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 导数与导函数的概念 课型 新授
教学目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点: 1、导数的求解方法和过程;2、导数符号的灵活运用教学难点: 1、导数概念的理解;2、导函数的理解、认识和运用
教学过程 备课札记
一、情境引入在前面我们解决的问题:1、求函数在点(2,4)处的切线斜率。,故斜率为4 2、直线运动的汽车速度V与时间t的关系是,求时的瞬时加速度。,故瞬时加速度为2t 二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间(,)上的函数,,当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,上述两个问题中:(1),(2)三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求下列函数在相应位置的导数(1), (2),(3),例1、函数满足,则当x无限趋近于0时,(1) (2) 变式:设f(x)在x=x0处可导,(3)无限趋近于1,则=___________(4)无限趋近于1,则=________________(5)当△x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、若,求和注意分析两者之间的区别。例4:已知函数,求在处的切线。导函数的概念涉及:的对于区间(,)上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。五、小结与作业例2、已知(1)求在处的导数;(2)求在处的导数.补充:已知点M(0,-1),F(0,1),过点M的直线与曲线在处的切线平行.(1)求直线的方程;(2)求以点F为焦点, 为准线的抛物线C的方程.
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 常见函数的导数 课型 新授
一、教学目标:掌握初等函数的求导公式;二、教学重难点:用定义推导常见函数的导数公式.
教学过程 备课札记
一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。(1)求函数的改变量(2)求平均变化率(3)取极限,得导数= 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。(1)、y=x (2)、y=x2 (3)、y=x3 问题:,,呢?问题:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导公式: ⑴ (k,b为常数) ⑵ (C为常数) ⑶ ⑷ ⑸ ⑹ ⑺ 由⑶~⑹你能发现什么规律 ⑻ (为常数)⑼ ⑽ ⑾ ⑿ ⒀ ⒁ 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。例1、求下列函数导数。(1) (2) (3)(4) (5)y=sin(+x) (6) y=sin (7)y=cos(2π-x) (8)y=例2:已知点P在函数y=cosx上,(0≤x≤2π),在P处的切线斜率大于0,求点P的横坐标的取值范围。例3.若直线为函数图象的切线,求b的值和切点坐标.变式1.求曲线y=x2在点(1,1)处的切线方程.总结切线问题:找切点 求导数 得斜率变式2:求曲线y=x2过点(0,-1)的切线方程变式3:求曲线y=x3过点(1,1)的切线方程变式4:已知直线,点P为y=x2上任意一点,求P在什么位置时到直线距离最短.三、小结(1)基本初等函数公式的求导公式(2)公式的应用
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 简单复合函数的导数 课型 新授
教学目标:1.掌握简单复合函数的导数的推导 2.简单复合函数的导数的应用教学重点:掌握简单复合函数的导数的推导教学难点:简单复合函数的导数的应用
教学过程 备课札记
一、基础知识梳理:复合函数的求导数公式;二、典型例题分析:例1、求下列函数的导数;1)、 2)、练习:求下列函数的导数1)、 2)、例2、求下列函数的导数;1)、 2)、 练习:求导数; 1)、 2)、3)、求曲线在点P()处的切线方程。例3、设,求及1)、 2)、 3)、四、课堂小结:
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 导数在实际生活中的应用 课型 新授
教学目标 1.通过生活中优化问题的学习,体会导数在解决设计问题中的作用 2.通过对实际问题的研究,促进学生分析问题,解决问题的能力教学重点 如何建立数学模型来解决实际问题教学难点 如何建立数学模型来解决实际问题
教学过程 备课札记
一.基础知识梳理:1 解决实际应用问题时,要把问题中所涉及的几个变量转化函数关系式,这需要通过分析,联想,抽象和转化完成,函数的最值要由极值和端点的函数值确定,当定义域是开区间且函数只有一个极值时,这个极值就是它的最值。2.实际应用问题的解题程序: 读题 建模 求解 反馈二、讲解范例:例1在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?解法一:设箱底边长为xcm,则箱高cm,得箱子容积 . 令 =0,解得 x=0(舍去),x=40, 并求得 V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积.(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解:设圆柱的高为h,底半径为R,则表面积S=2πRh+2πR2由V=πR2h,得,则S(R)= 2πR+ 2πR2=+2πR2令 +4πR=0解得,R=,从而h====2即 h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 提示:S=2+h=V(R)=R= )=0 .三、课堂练习:1.使内接椭圆=1的矩形面积最大,矩形的长为_____,宽为_____.2.在半径为R的圆内,作内接等腰三角形,当底边上高为___时,它的面积最大答案: 4.a b 5.R四、小结 :⑴解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.⑵根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.⑶相当多有关最值的实际问题用导数方法解决较简单
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 瞬时变化率—导数 课型 新授
教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想
教学过程 备课札记
一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[xA,xB]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。从这个动画可以看出,随着点P沿曲线向点Q运动,随着点P无限逼近点Q时,则割线的斜率就会无限逼近曲线在点Q处的切线的斜率。所以我们可以用Q点处的切线的斜率来刻画曲线在点Q处的变化趋势二、新课讲解1、曲线上一点处的切线斜率不妨设P(x1,f(x1)),Q(x0,f(x0)),则割线PQ的斜率为,设x1-x0=△x,则x1 =△x+x0,∴当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时,无限趋近点Q处切线斜率。2、曲线上任一点(x0,f(x0))切线斜率的求法:,当△x无限趋近于0时,k值即为(x0,f(x0))处切线的斜率。3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2) 位移的平均变化率:(3)瞬时速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时速度求瞬时速度的步骤:1.先求时间改变量和位置改变量2.再求平均速度3.后求瞬时速度:当无限趋近于0,无限趋近于常数v为瞬时速度(4)速度的平均变化率:(5)瞬时加速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率三、数学应用例1、已知f(x)=x2,求曲线在x=2处的切线的斜率。变式:1.求过点(1,1)的切线方程2.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________3.已知曲线上的一点P(0,0)的切线斜率是否存在 例2.一直线运动的物体,从时间到时,物体的位移为,那么为( )A.从时间到时,物体的平均速度; B.在时刻时该物体的瞬时速度; C.当时间为时物体的速度; D.从时间到时物体的平均速度例3.自由落体运动的位移s(m)与时间t(s)的关系为s=(1)求t=t0s时的瞬时速度 (2)求t=3s时的瞬时速度 (3)求t=3s时的瞬时加速度点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 平均变化率 课型 新授
一、教学目标1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。二、教学重点、难点 重点:平均变化率的实际意义和数学意义 难点:平均变化率的实际意义和数学意义
教学过程 备课札记
一、问题情境1、情境:现有南京市某年3月和4月某天日最高气温记载.时间3月18日4月18日4月20日日最高气温3.5℃18.6℃33.4℃观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:(理解图中A、B、C点的坐标的含义)问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)问题2:如何量化(数学化)曲线上升的陡峭程度?二、学生活动1、曲线上BC之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度。2、由点B上升到C点,必须考察yC—yB的大小,但仅仅注意yC—yB的大小能否精确量化BC段陡峭程度,为什么?3、在考察yC—yB的同时必须考察xC—xB,函数的本质在于一个量的改变本身就隐含着这种改变必定相对于另一个量的改变。三、建构数学1.通过比较气温在区间[1,32]上的变化率0.5与气温[32,34]上的变化率7.4,感知曲线陡峭程度的量化。2.一般地,给出函数f(x)在区间[x1,x2]上的平均变化率。3.回到气温曲线图中,从数和形两方面对平均变化率进行意义建构。4。平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x2—x1很小时,这种量化便有“粗糙”逼近“精确”。四、数学运用例1、 在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?变:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?小结:仅考虑一个变量的变化是不形的。例2、水经过虹吸管从容器甲中流向容器乙,t s后容器甲中水的体积 (单位:),计算第一个10s内V的平均变化率。注: 例3、已知函数,分别计算在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]。 五、课堂练习1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。2、已知函数f(x)=2x+1,g(x)=—2x,分别计算在区间[-3,-1],[0,5]上f(x)及g(x)的平均变化率。 (发现:y=kx+b在区间[m,n]上的平均变化率有什么特点?)六、回顾反思1、平均变化率 一般的,函数在区间[x1,x2]上的平均变化率。2、平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.七、作业
t(d)
20
30
34
2
10
20
30
A (1, 3.5)
B (32, 18.6)
0
C (34, 33.4)
T (℃)
2
10
T(月)
W(kg)
6
3
9
12
3.5
6.5
8.6
11
知识改变命运 学习成就未来扬州中学西区校07-08学年度第一学期高二数学教案( )
主备人 胡广宏 授课人 授课日期
课题 函数的最大值与最小值(2) 课型 新授
教学目的:⒈使学生理解函数的最大值和最小值的概念教学重点:利用导数求函数的最大值和最小值的方法.⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系
教学过程 备课札记
一、课前预习: 求值域二、知识点梳理:1.极大值与极小值统称为极值 注意以下几点:(ⅰ)极值是一个局部概念,并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点⒉利用导数求函数的最值步骤:设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值三、典型例题:例1、已知函数f(x) = 在点x0处取得最大值5,其导数的图象经过(1,0)和(2,0),如图所示:求x0的值求a,b,c的值?例2、设f(x)= (1)求函数f(x)的单调递增、递减区间;(2)当x∈[-1,2]时,f(x)2
1
知识改变命运 学习成就未来