(共28张PPT)
第六章
6.2 平均数(2)
北师大版 八年级上册
教材分析
由于学生在小学已经初步了解了算术平均数的概念及其应用,所以本节课的核心概念为加权平均数,体会“权”的作用.本课所蕴藏的数学思想方法主要是统计思想和比较思想,通过“平均”和“权”,体会统计思想中的均值思想,通过“算术平均数”和“加权平均数”的联系与区别,体会数学思想中的比较思想,“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等),体现了从特殊到一般的数学研究思想.平均数是统计与概率领域中的重要内容,它是研究现实生活中的数据,对数据进行描述和分析的重要工具.本课是继七上《数据的收集与整理》的学习,感受数据的收集方法,掌握数据的整理和表示之后的进一步延伸,是课程标准中统计与概率的一个重要组成部分.学生通过经历统计的活动过程,发展数据分析观念,为后面进一步学习中位数、众数等知识对数据进行分析奠定基础.
教学目标
1. 会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。
2. 通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。
3. 通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
温故知新
1.平均数
一般地,对于n 个数x1,x2,… xn,,我们把
叫做这n个数的算术平均数记着
2.加权平均数
一般地,如果在n个数中,x1出现f1次,x2出现f2次, ……,xk出现fk次
(这时 f1+f2+……+fk=n ),那么这n个数的加权平均数为
问题一:某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分10分),其中三个班级的成绩分别如下:
服装统一 进退场有序 动作规范 动作整齐 总成绩
一 班 9 8 9 8 34
二 班 10 9 7 8 34
三 班 8 9 8 9 34
典例分析
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?
典例分析
解:一班的广播操成绩为:9×10%+8×20%+9×30%+8×40%=8.4
二班的广播操成绩为:10×10%+9×20%+7×30%+8×40%=8.1
三班的广播操成绩为:8×10%+9×20%+8×30%+9×40%=8.6
因此,三班的广播操成绩最高.
2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流.
典例分析
权有差异,得出的结果就会不同,
也就是说权的差异对结果有影响.
典例分析
问题2.小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
解:(1)小明的平均速度是
(15×1+5×1)÷(1+1)=10千米/时
(2)小明的平均速度是
(15×2+5×3)÷(2+3)=9千米/时
问题3:小颖家去年的饮食支出为3600元,教育支出为1200 元,其他支出为7200 元。小颖家今年的这三项支出依次比去年增长了9%,30%,6%,小颖家今年的总支出比去年增长的百分数是多少?
以下是小明和小亮的两种解法,谁做得对?说说你的理由。
小明:(9%+30%+6%)÷3=15%
小亮:(9%×3600+30%×1200+6%×7200)
÷(3600+1200+7200)=9.3%
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位” 不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小亮的解法是对的。日常生活中的许多“平均” 现象是“加权平均”
典例分析
典例分析
问题四;为了估计某矿区铁矿石的含铁量,抽取了15块矿石,测得它们的含铁量如下:(单位:%)
26 24 21 28 27 23 23 25 26 22 21 30 26 20 30
则样本的平均数是多少
= =24.8
有没有比较简单的方法呢?
典例分析
解:每个数据都减去25,新数据的和为-3,
新数据的平均数为-0.2
原数据的平均数为:25-0.2=24.8
一般的:当一组数据 x1,x2, …,xn 的各个数值都在某个常数a附近的时候,我们可以把各个数据同时减去一个适当的常数a,得到一组新数据,计算新数据的平均数
典例分析
课堂练习
【知识技能类作业】必做题
1.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是( )
A.
B.
C.
D.
B
课堂练习
2.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A.80分 B.82分 C.84分 D.86分
3.要了解某地居民的用电情况,抽查了部分居民在一个月中的用电情况,其中用电15千瓦时的有3户,用电20千瓦时的有5户,用电30千瓦时的有7户,则平均每户大约用电( )
A.23.7千瓦时 B.21.6千瓦时 C.20千瓦时 D.5.416千瓦时
B
A
课堂练习
4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( )
A.甲 B.乙 C.丙 D.丁
B
课堂练习
5.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.
a.实心球成绩的频数分布如表所示:
【知识技能类作业】
选做题:
b.实心球成绩在7.0≤x<7.4这一组的是:
7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3
c.一分钟仰卧起坐成绩如图所示:
课堂练习
根据以上信息,回答下列问题:
(1)①表中m的值为 ;②一分钟仰卧起坐成绩的中位数为 ;
(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.
①请估计全年级女生实心球成绩达到优秀的人数;
②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:
其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.
课堂练习
解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;
②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;
(2)①∵实心球成绩在7.0≤x<7.4这一组的是:
7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,
∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,
∴全年级女生实心球成绩达到优秀的人数是:=65,
答:全年级女生实心球成绩达到优秀的有65人;
②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.
课堂练习
6.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?
【综合实践类作业】
课堂总结
加权平均数的影响
不同的权重,直接影响最后决策的结果,在实际生活中,我们经常会遇到这类问题,当需要在某个方面要求比较高的时候,往往可以加大这方面的权重,
以达到预想的结果.
作业布置
【知识技能类作业 必做题】
1.小明记录了今年三月份某5天的最低温度(单位: ℃):1,2,0,-1,-2.这5天的最低温度的平均值是( C )
A.1 ℃ B.2 ℃ C.0 ℃ D.-1 ℃
2.某中学举行歌咏比赛,六位评委对某位选手的打分如下(单位:分):77,82,78,91,83,75.去掉一个最高分和一个最低分后的平均分是( B )
A.79分 B.80分 C.81分 D.82分
3.小明在九年级第一学期的数学成绩分别为:测验一得88分,测验二得92分,测验三得84分,期中考试得90分,期末考试得87分.如果按照平时、期中、期末的权重分别为10%,30%与60%,那么小明该学期的总评成绩为( C )
A.86 B.87 C.88 D.89
作业布置
4.已知一组数据a1,a2,a3,a4,a5的平均数为8,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为( C )
A.3 B.8 C.9 D.13
5.学校组织领导、教师、学生、家长等人对教师的教学质量进行综合评分,满分为100分,王老师的得分情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分,如果按照1∶2∶4∶1的数量进行计算,王老师的综合评分是( A )科
A.84.5分 B.83.5分 C.85.5分 D.86.5分
6.某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是( B )
A.85分 B.85.5分 C.90分 D.80分
【知识技能类作业 必选做题】
作业布置
7.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:
(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人__甲__将被录取;
(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权,则候选人__乙__将被录取.
作业布置
【综合实践类作业】
8.某政府部门招聘公务员1人,对前来应聘的A,B,C三人进行了三项测试.他们的各项测试成绩如下表所示:
① 根据三项测试的平均成绩确定录用人选,那么谁将被录用
② 若将笔试、面试、群众评议三项测试得分按1﹕2﹕4的比例确定各人的测试成绩,此时谁将被录用?
作业布置
解:① A的得分为:84;B的得分为:83;C的得分为:80.
根据三项测试的平均成绩确定录用人选A将被录用。
②A的得分为:81.1;B的得分为:83.7; C的得分为:80.7.
若将笔试、面试、群众评议三项测试得分按1:2:4的比例确定各人的测试成绩,
此时B将被录用
板书设计
加权平均数
算术平均数
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
第六章分课时教学设计
第二课时<第六章数据的分析》平均数教学设计
课型 新授课口 复习课口 试卷讲评课口 其他课口
教学内容分析 由于学生在小学已经初步了解了算术平均数的概念及其应用,所以本节课的核心概念为加权平均数,体会“权”的作用.本课所蕴藏的数学思想方法主要是统计思想和比较思想,通过“平均”和“权”,体会统计思想中的均值思想,通过“算术平均数”和“加权平均数”的联系与区别,体会数学思想中的比较思想,“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等),体现了从特殊到一般的数学研究思想.平均数是统计与概率领域中的重要内容,它是研究现实生活中的数据,对数据进行描述和分析的重要工具.本课是继七上《数据的收集与整理》的学习,感受数据的收集方法,掌握数据的整理和表示之后的进一步延伸,是课程标准中统计与概率的一个重要组成部分.学生通过经历统计的活动过程,发展数据分析观念,为后面进一步学习中位数、众数等知识对数据进行分析奠定基础.
学习者分析 学生在小学已经初步了解了算术平均数的概念及其应用,给出一组数据,可以算出这组数据的算术平均数,但小学仅给出“平均数”这个概念,并未提出“算术平均数”的概念,且未给出求算术平均数的公式.学生在小学已学过求算术平均数的简便算法,在此基础上能够较好地引出加权平均数的概念,但是教材中并未给出加权平均数的形式化定义和计算公式,学生不易理解,可采取“实例+说明”的方式给学生加以解释.同时,学生还处于以形象思维为主,向逻辑思维形成过渡的时期,对于“权”的内涵和形式不易理解,可通过实例让学生了解权有时表现为数据出现的次数,有时更侧重于表现数据的重要程度.
教学目标 1. 会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。 2. 通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。 3. 通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点 加权平均数的求法,并利用平均数解决一些实际问题.
教学难点 理解“权”的内涵.
学习活动设计
教师活动学生活动环节一:知识回顾教师活动1: 1.算术平均数 一般地,对于n 个数x1,x2,… xn,,我们把 叫做这n个数的算术平均数记着 2.加权平均数 一般地,如果在n个数中,x1出现f1次,x2出现f2次, ……,xk出现fk次(这时 f1+f2+……+fk=n ),那么这n个数的加权平均数为 学生活动1 学生思考算术平均数和加权平均数的求法活动意图说明: 以旧引新,自然衔接,起到温故知新、调动学生学习积极性的作用。 环节二:典例分析教师活动2: 问题一:某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分10分),其中三个班级的成绩分别如下: 服装统一 进退场有序 动作规范 动作整齐 总成绩一 班989834二 班1097834三 班898934
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高? 解:一班的广播操成绩为:9×10%+8×20%+9×30%+8×40%=8.4 二班的广播操成绩为:10×10%+9×20%+7×30%+8×40%=8.1 三班的广播操成绩为:8×10%+9×20%+8×30%+9×40%=8.6 因此,三班的广播操成绩最高. 2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流. 结论:权有差异,得出的结果就会不同,也就是说权的差异对结果有影响. 问题二 .小明骑自行车的速度是15千米/时,步行的速度是5千米/时。 (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少? (2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少? 解:(1)小明的平均速度是 (15×1+5×1)÷(1+1)=10千米/时 (2)小明的平均速度是 (15×2+5×3)÷(2+3)=9千米/时 问题三:小颖家去年的饮食支出为3600元,教育支出为1200 元,其他支出为7200 元。小颖家今年的这三项支出依次比去年增长了9%,30%,6%,小颖家今年的总支出比去年增长的百分数是多少? 以下是小明和小亮的两种解法,谁做得对?说说你的理由。 小明:(9%+30%+6%)÷3=15% 小亮:(9%×3600+30%×1200+6%×7200) ÷(3600+1200+7200)=9.3% 由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位” 不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小亮的解法是对的。日常生活中的许多“平均” 现象是“加权平均”学生活动2: 1)学生先独立思考,计算该题,然后在小组交流。 (2)各小组之间竞争回答。 活动意图说明: 1、通过学生计算,自己再设计方案和交流,确实让他们体会到权的差异对结果的影响,认识到权的重要性。 2、使学生理解日常生活中的许多“平均”现象并非算术平均。由于多数情况下,各项的重要性不一定相同(即权数不同),所以应将其视为加权平均。 3、小组之间竞争回答问题,让学生经历体验竞争的过程,并以打星的方式给予评价,旨在激发学生的积极性。环节三:探究求平均数的简便算法教师活动4: 262421282723232526222130262030
为了估计某矿区铁矿石的含铁量,抽取了15块矿石,测得它们的含铁量如下:(单位:%) 则样本的平均数是多少 =24.8 有没有比较简单的方法呢? 解:每个数据都减去25,新数据的和为-3, 新数据的平均数为-0.2 原数据的平均数为:25-0.2=24.8 一般的:当一组数据 x1,x2, …,xn 的各个数值都在某个常数a附近的时候,我们可以把各个数据同时减去一个适当的常数a,得到一组新数据,计算新数据的平均数 学生活动4: 学生思考求平均数的简便算法的算理。活动意图说明: 计算平均数时过程比较复杂,通过对例题探究使学生明白如果一组数据在每个数字之间波动,不妨设这个数为平均数,通过移多补少的方法求出正确的平均数。
板书设计
课堂练习 【知识技能类作业】 必做题: 1.1.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是( B ) 2.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( B ) A.80分 B.82分 C.84分 D.86分 3.要了解某地居民的用电情况,抽查了部分居民在一个月中的用电情况,其中用电15千瓦时的有3户,用电20千瓦时的有5户,用电30千瓦时的有7户,则平均每户大约用电( A ) A.23.7千瓦时 B.21.6千瓦时 C.20千瓦时 D.5.416千瓦时 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁 选做题: 5.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息. a.实心球成绩的频数分布如表所示: b.实心球成绩在7.0≤x<7.4这一组的是: 7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3 c.一分钟仰卧起坐成绩如图所示: 根据以上信息,回答下列问题: (1)①表中m的值为 ;②一分钟仰卧起坐成绩的中位数为 ; (2)若实心球成绩达到7.2米及以上时,成绩记为优秀. ①请估计全年级女生实心球成绩达到优秀的人数; ②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示: 其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由 解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9; ②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45; (2)①∵实心球成绩在7.0≤x<7.4这一组的是: 7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3, ∴实心球成绩在7.0≤x<7.4这一组优秀的有4人, ∴全年级女生实心球成绩达到优秀的人数是:=65, 答:全年级女生实心球成绩达到优秀的有65人; ②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀. 【综合拓展类作业】 6.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分) (1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?
作业设计 【知识技能类作业】 必做题: 1.小明记录了今年三月份某5天的最低温度(单位: ℃):1,2,0,-1,-2.这5天的最低温度的平均值是( C ) A.1 ℃ B.2 ℃ C.0 ℃ D.-1 ℃ 2.某中学举行歌咏比赛,六位评委对某位选手的打分如下(单位:分):77,82,78,91,83,75.去掉一个最高分和一个最低分后的平均分是( B ) A.79分 B.80分 C.81分 D.82分 3.小明在九年级第一学期的数学成绩分别为:测验一得88分,测验二得92分,测验三得84分,期中考试得90分,期末考试得87分.如果按照平时、期中、期末的权重分别为10%,30%与60%,那么小明该学期的总评成绩为( C ) A.86 B.87 C.88 D.89 4.已知一组数据a1,a2,a3,a4,a5的平均数为8,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为( C ) A.3 B.8 C.9 D.13 5.学校组织领导、教师、学生、家长等人对教师的教学质量进行综合评分,满分为100分,王老师的得分情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分,如果按照1∶2∶4∶1的数量进行计算,王老师的综合评分是( A )科 A.84.5分 B.83.5分 C.85.5分 D.86.5分 6.某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是( B ) A.85分 B.85.5分 C.90分 D.80分 选做题: 7.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下: (1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人__甲__将被录取; (2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权,则候选人__乙__将被录取. 【综合拓展类作业】 8.某政府部门招聘公务员1人,对前来应聘的A,B,C三人进行了三项测试.他们的各项测试成绩如下表所示: ① 根据三项测试的平均成绩确定录用人选,那么谁将被录用 ② 若将笔试、面试、群众评议三项测试得分按1﹕2﹕4的比例确定各人的测试成绩,此时谁将被录用? 解:① A的得分为:84;B的得分为:83;C的得分为:80. 根据三项测试的平均成绩确定录用人选A将被录用。 ②A的得分为:81.1;B的得分为:83.7; C的得分为:80.7. 若将笔试、面试、群众评议三项测试得分按1:2:4的比例确定各人的测试成绩, 此时B将被录用
教学反思
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
学 科 数学 年 级 八 设计者 尹坚
教材版本 北师大版 册、章 八年级数学上册第六章
课标要求 本章主要内容是算术平均数、加权平均数、中位数、众数、极差、方差等统计量的统计意义。课本要求是;学习如何利用这些统计量分析数据的集中趋势和离散程度,并通过研究如何用样本的平均数和方差估算总体的平均数个方差,体会用样本估计整体的思想,根据课标要求,
内容分析 本章属于“统计与概率”领域,在本套教科书独立于“数与代数”和“空间与图形”领域编写,共有三章。前二章是统计,最后一章是概率。统计部分的二章内容按照数据处理的基本过程来安排。本章主要学习如何利用平均数(主要是加权平均数)、中位数、众数等描述数据的集中趋势,以及如何利用极差、方差等描述数据的波动情况。本章知识结构框图:
学情分析 八年级学生认知水平处于直观到抽象转变的阶段,基本形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以直观思维为主。从整体上看,八年级学生探索欲和求知欲不断增强,大多数学生上课基本上能够跟上教师讲课的思路,而且学生的学习积极性也很容易调动。但自主建构知识体系,提升数学思维水平方面还有待加强。本章节内容较多,区分算术平均数、加权平均数、中位数、众数、极差、方差等概念有一定的困难。且计算较为复杂,所以教学时要始终关注学生的状态,及时对学生的学生做出积极的评价。
单元目标 (一)教学目标1.理解平均数、中位数和众数的统计意义;2.会计算中位数、众数、加权平均数。能选择适当地统计量表示数据的集中趋势;3.理解方差的统计意义,会计算简单数据的方差;4.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性;5.会用样本平均数、方差估计总体平均数、方差,进一步感受抽样的必要性,体会样本估计总体的思想;6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活(二)教学重点、难点重点:正确的求一组数据的平均数、中位数、众数、方差,并利用它们对数据做出分析。难点:体会平均数、中位数、众数、方差的区别。
单元知识结构框架及课时安排 (二)课时安排课时编号单元主要内容课时数1算术平均与加权平均数(一)12算术平均与加权平均数(二)13、中位数与众数14从统计图中分析数据的集中趋势15数据的离散程度16回顾与反思1
达成评价 课题课时目标达成评价评价任务算术平均与加权平均数(一)1、知识与技能:理解算术平均数、加权平均数的概念,会选用合适的方法求一组数据的算术平均数和加权平均数.2、经历用平均数描述数据集中趋势的过程,体会数据中所蕴含的信息,发展数据分析观念;3、体会算术平均数与加权平均数的联系与区别,发展应用意识.学生聆听教师讲授的内容。利用原有知识分别求出两支球队的平均身高和平均年龄。3、理解加权平均数的意义4、小组合作探究加权平均数的计算方法。5、听故事,理解“权”在一组数据中的重要程度,环节一:章节教学内容引入。环节二,温故知新 求平均数的方法。环节三:探究加权平均数的求法。算术平均与加权平均数(二) 会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。2. 通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。3. 通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。1、学生思考算术平均数和加权平均数的求法。2、学生先独立思考,计算该题,然后在小组交流。3、各小组之间竞争回答。4、学生思考求平均数的简便算法的算理。环节一:温故知新。环节二,典例分析。环节三:探究平均数的简便算法。中位数与众数1.经历用中位数和众数描述集中趋势的过程,发展数据分析观念。2.理解中位数和众数的概念,能求出一组数据的中位数和众数。3.在具体情境中体会平均数,中位数和众数三者的差别,能根据问题的背景选择合适的量描述一组数据的集中趋势1、学生讨论哪个数据反映员工的平均收入更合适。2学生讨论用平均数来描述该公司员工工资的一般水平合适吗?3、求一组数据的中位数和众数。环节一:情景引入。环节二,探究中位数。环节三:探究众数。从统计图中分析数据的集中趋势1、知识与技能目标:能从条形统计图、折线统计图、扇形统计图中获取信息,求出或估计一组数据的平均数、中位数和众数。 2、过程与方法目标:经过从统计图中分析数据集中趋势的过程,发展几何直观,逐步提高数据分析能力。 3、情感态度与价值观目标:在用统计图分析数据的过程中感受数据与几何图形间的联系,利用几何图形感受数据集中趋势,发展数形结合的观念1、学生回顾知识,2、分析折线统计图,求这组数据的中位数、众数、平均数。3、讨论从折线统计图分析中位数、众数、平均数。4、分析条形统计图,求这组数据的中位数、众数、平均数。3、讨论从条形统计图分析中位数、众数、平均数5、分析扇形统计图,求这组数据的中位数、众数、平均数。3、讨论从扇形统计图分析中位数、众数、平均数环节一:知识回顾。环节二,探究从折线统计图中分析数据的集中趋势。环节三,探究从条形统计图中分析数据的集中趋势。环节四,探究从扇形统计图中分析数据的集中趋势。数据的离散程度1.了解刻画数据离散程度的三个量——极差、方差和标准差,能借助计算器求出一组数据的标准差.2.经历探索表示数据离散程度的过程,体会刻画数据离散程度的意义.3.经历用方差刻画数据离散程度的过程,发展数据分析观念1、学生思考问题理解极差的含义。2、学生自主探究极差、方差、标准差的求法.环节一:情景引入。环节二,探究方差的求法。回顾与反思1.能说出并掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。2.能说出中位数、众数的定义,会求一组数据的中位数、众数;体会平均数、中位数、众数三者的差别;3.了解刻画数据离散程度的三个量度—极差、方差、标准差;能借助计算器求出相应的数值,并在具体问题情境中加以应用。4. 能从各类统计图中获取数据,初步选取恰当的数据代表作为自己的判断,通过实例体会用样本估计总体的思想。4、通过复习提高归纳整理的能力1、学生思考、交流、梳理知识。2、引导生完成完成合作探究,深化学生对知识的认识和理解。如学生有困难,老师可以把问题进行分解。3、学生解决问题,对学困生教师适当引导。环节一:构建知识框架。环节二,知识梳理。环节三,典例分析
《数据的分析》单元教学设计
活动一:章节引入
活动二:温故知新 求平均数
任务一
平均数和加权平均数
活动三:探究加权平均数的求法
活动一:温故知新
任务二
平均数和加权平均数
活动二:典例分析
活动三:探究平均数的简便算法
活动一:情景引入
活动二:探究中位数
任务三
平均数和加权平均数
数据的分析
活动三:探究众数
活动一:知识回顾
活动二:探究折线统计图分析数据的集中趋势
任务四
从统计图中分析数据的集中趋势
活动三:探究条统计图分析数据的集中趋势
活动二:探究扇形统计图分析数据的集中趋势
活动一:情景引入
任务五
数据的离散程度
数据的分析
活动二:探究方差的计算
活动一:构建知识框架
活动二:知识梳理
任务六
回顾与反思
活动三:典例分析
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)