中小学教育资源及组卷应用平台
2023-2024学年高二数学上学期期中精选名校测试卷(陕西2)
(本试卷满分150分,考试时间120分钟)
测试范围:选择性必修第一册(人教A版2019)第一章、第二章
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2023春·陕西西安·高一长安一中校考期末)已知MN是正方体内切球的一条直径,点Р在正方体表面上运动,正方体的棱长是2,则的取值范围为( )
A. B. C. D.
【答案】B
【分析】利用向量的线性运算和数量积运算律可得,根据正方体的特点确定最大值和最小值,即可求解
【详解】设正方体内切球的球心为,则,
,
因为MN是正方体内切球的一条直径,
所以,,
所以,
又点Р在正方体表面上运动,
所以当为正方体顶点时,最大,且最大值为;
当为内切球与正方体的切点时,最小 ,且最小为;
所以,
所以的取值范围为,
故选:B
2.(2022春·陕西商洛·高一陕西省丹凤中学校考阶段练习)已知直线的方程为,则直线的倾斜角范围是( )
A. B.
C. D.
【答案】B
【分析】利用直线斜率与倾斜角的关系即可求解.
【详解】由直线的方程为,
所以,
即直线的斜率,由.
所以 ,又直线的倾斜角的取值范围为,
由正切函数的性质可得:直线的倾斜角为.
故选:B
3.(2021秋·陕西西安·高二西安中学校考期末)对于空间任意一点和不共线的三点,,,且有,则,,是,,,四点共面的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分又不必要条件
【答案】B
【分析】利用空间中共面定理:空间任意一点和不共线的三点,,,且,得,,,四点共面等价于,然后分充分性和必要性进行讨论即可.
【详解】解:空间任意一点和不共线的三点,,,且
则,,,四点共面等价于
若,,,则,所以,,,四点共面
若,,,四点共面,则,不能得到,,
所以,,是,,,四点共面的充分不必要条件
故选B.
【点睛】本题考查了空间中四点共面定理,充分必要性的判断,属于基础题.
4.(2022秋·陕西咸阳·高一武功县普集高级中学校考期末)下列直线中,倾斜角为45°的是( )
A. B.
C. D.
【答案】C
【分析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.
【详解】由直线的倾斜角为45°,可知直线的斜率为,
对于A,直线斜率为,
对于B,直线无斜率,
对于C,直线斜率,
对于D,直线斜率,
故选:C
5.(2023春·陕西宝鸡·高二虢镇中学校考开学考试)若,,且,的夹角的余弦值为,则等于( )
A.2 B. C.或 D.2或
【答案】C
【分析】根据,解得即可得出答案.
【详解】解:因为,,
所以,
解得:或.
故选:C.
6.(2022春·陕西咸阳·高二武功县普集高级中学校考阶段练习)已知O为坐标原点,直线上存在一点P,使得,则k的取值范围为( )
A. B.
C. D.
【答案】C
【分析】根据题意得坐标原点到直线距离,利用点到直线的距离公式即可求解.
【详解】点到直线的距离为
,
由题意得坐标原点到直线距离,,
所以,解得
所以k的取值范围为.
故选:C.
7.(2022·陕西西安·交大附中校考模拟预测)在矩形中,,,沿对角线将矩形折成一个大小为的二面角,若,则下列结论中正确结论的个数为( )
①四面体外接球的表面积为
②点与点之间的距离为
③四面体的体积为
④异面直线与所成的角为
A. B. C. D.
【答案】B
【分析】分析可知线段的中点为四面体外接球球心,结合球体表面积公式可判断①;过点在平面内作,垂足为点,过点作交于点,以点为坐标原点,、所在直线分别为、轴,平面内过点且垂直于的垂线为轴建立空间直角坐标系,利用空间向量法可判断②③④的正误.
【详解】对于①,取的中点,连接、,则,
因为,所以,,
所以,为四面体的外接球球心,球的表面积为,①对;
对于②③④,过点在平面内作,垂足为点,过点作交于点,
则二面角的平面角为,
在中,,,,则,,
,则,,,
,,,平面,
以点为坐标原点,、所在直线分别为、轴,平面内过点且垂直于的垂线为轴建立如下图所示的空间直角坐标系,
因为,则、、、,
,②错,
,,③对,
,,
,故异面直线与所成角为,④错.
故选:B.
【点睛】方法点睛:求空间多面体的外接球半径的常用方法:
①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;
②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;
③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可;
④坐标法:建立空间直角坐标系,设出外接球球心的坐标,根据球心到各顶点的距离相等建立方程组,求出球心坐标,利用空间中两点间的距离公式可求得球的半径.
8.(2022春·陕西榆林·高一陕西省神木中学校联考期末)已知直线与圆交于两个不同点,则当弦最短时,圆与圆的位置关系是( )
A.内切 B.相离 C.外切 D.相交
【答案】D
【分析】由直线过定点且定点在圆内,当弦最短时直线垂直,根据斜率乘积为求出,进而求出圆的方程,再根据圆心距与两圆半径的关系确定答案.
【详解】易知直线过定点,弦最短时直线垂直,
又,所以,解得,
此时圆的方程是.
两圆圆心之间的距离,
又,所以这两圆相交.
故选:D.
二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)
9.(2023秋·陕西西安·高二西安市铁一中学校考期末)在平面直角坐标系中,已知圆,其中,则( )
A.圆过定点 B.圆的圆心在定直线上
C.圆与定直线相切 D.圆与定圆相切
【答案】BC
【分析】利用反证法可判断AD选项;求出圆心所在直线的方程,可判断B选项;判断圆与直线的位置关系,可判断C选项.
【详解】对于A选项,圆的方程可化为,
若圆过定点,则,可得,矛盾,A错;
对于B选项,圆的圆心坐标为,则圆心在直线上,B对;
对于C选项,圆心到直线的距离为
,故直线与圆相切,
同理可知,直线与圆也相切,C对;
对于D选项,设定圆的圆心为,半径为,设,
若定圆与圆外切,则,
化简得,
由二次函数的性质可知,关于的二次函数在时的值不可能恒为零,舍去;
若定圆与圆内切,则,
化简可得,
由二次函数的性质可知,关于的二次函数在时的值不可能恒为零,舍去.
同理可知,当时,不存在定圆与圆相切,D错.
故选:BC.
10.(2022·陕西西安·高二西安中学校联考期末)已知向量,则与共线的单位向量( )
A. B.
C. D.
【答案】AC
【分析】根据向量数乘的概念,可知单位向量的求法, ,即可求出.
【详解】设与共线的单位向量为,所以,因而,得到.
故,而,所以或.
故选:AC.
【点睛】本题主要考查单位向量的求法以及共线向量定理的应用.
11.(2022秋·陕西西安·高一西安建筑科技大学附属中学校考期末)已知直线,则下列结论正确的是( )
A.直线的倾斜角是
B.若直线,则
C.点到直线的距离是2
D.过与直线平行的直线方程是
【答案】CD
【分析】求出直线的斜率可得倾斜角,即可判断A;利用两直线垂直的条件可判断B;利用点到直线的距离公式可判断C;利用两直线平行的条件可判断D,进而可得正确选项.
【详解】由可得,所以直线的斜率为,
对于A:因为直线的斜率为,设直线的倾斜角为,则,可得,
故选项A不正确;
对于B:直线的斜率为,因为,所以不成立,故选项B不正确;
对于C:点到直线的距离是,故选项C正确;
对于D:设与直线平行的直线方程是,则,
可得,所以过与直线平行的直线方程是,故选项D正确;
故选:CD.
12.(2023秋·陕西西安·高二校考阶段练习)如图,在四棱锥中,底面是边长为2的正方形,为等边三角形,平面平面,点在线段上,,交于点,则下列结论正确的是( )
A.若平面,则为的中点
B.若为的中点,则三棱锥的体积为
C.锐二面角的大小为
D.若,则直线与平面所成角的余弦值为
【答案】ABD
【分析】对于,根据线面平行性质可得,进而得到为的中点;
对于,利用求解即可;
对于,作的中点,则 为锐二面角 的平面角,再结合余弦定理可求解二面角的平面角的余弦值,即可判断错误;
对于,建系,求平面的法向量,根据向量的夹角来求直线与平面所成角的余弦值.
【详解】解:对于,连接,当平面,根据线面平行的性质可得,从而得到为的中点.故正确;
为的中点,,
取中点,连接,因为为等边三角形,所以,又平面平面,
由面面垂直性质可得底面,
,,所以正确.
连接,因为底面,又平面,所以,
在中,,
取中点,连接,,,,
为锐二面角的平面角,
在中,,
,由余弦定理可得
,所以,故错误.
对于,建立空间直角坐标系,
则,0,,,2,,,2,,,0,,,0,,
因为,所以,
设平面 的法向量,则,即,取,
解得,所以,
,
故正确.
故选:.
三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
13.(2022春·陕西西安·高一长安一中校考阶段练习)如图,已知一个的二面角的棱上有两点和,且和分别是在这两个面内且垂直于的线段.又知,,,则求CD的长为 .
【答案】
【分析】由向量的线性运算法则得到,根据题设条件和向量的数量积、向量模的计算公式,即可求解.
【详解】由向量的线性运算法则,可得,
因为,,且二面角的平面角为,
可得,,且,
又因为和分别是在这两个面内且垂直于的线段,所以,
所以
.
故答案为:.
14.(2022·陕西西安·西安中学校考模拟预测)直线和直线垂直,则实数 .
【答案】0或1/1或0
【分析】根据给定条件,利用两直线垂直关系直接列式计算作答.
【详解】因直线和直线垂直,
则有,即,解得或,
所以或.
故答案为:0或1
15.(2020秋·陕西西安·高二西安中学校考期末)已知,,,为空间中不共面的四点,且,若,,,四点共面,则实数 .
【答案】
【分析】根据,,,是不共面的四点,则对平面内任一点都存在唯一的有序实数组,使,其中,即可求解.
【详解】解:因为,且,,,四点共面,
则,解得,
故答案为:.
16.(2021春·陕西西安·高一西安交通大学附属中学航天学校校考开学考试)已知直线和互相平行,则实数的值为 .
【答案】
【分析】根据直线平行的充要条件即可求出实数的值.
【详解】由直线和互相平行,
得 ,即.
故答案为:.
四、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(2022春·陕西西安·高二西北工业大学附属中学校考阶段练习)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小
【答案】(1)证明见解析;(2)
【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;
(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;
【详解】(1)[方法一]:几何法
因为,所以.
又因为,,所以平面.又因为,构造正方体,如图所示,
过E作的平行线分别与交于其中点,连接,
因为E,F分别为和的中点,所以是BC的中点,
易证,则.
又因为,所以.
又因为,所以平面.
又因为平面,所以.
[方法二] 【最优解】:向量法
因为三棱柱是直三棱柱,底面,
,,,又,平面.所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
,.
由题设().
因为,
所以,所以.
[方法三]:因为,,所以,故,,所以,所以.
(2)[方法一]【最优解】:向量法
设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,此时.
[方法二] :几何法
如图所示,延长交的延长线于点S,联结交于点T,则平面平面.
作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
设,过作交于点G.
由得.
又,即,所以.
又,即,所以.
所以.
则,
所以,当时,.
[方法三]:投影法
如图,联结,
在平面的投影为,记面与面所成的二面角的平面角为,则.
设,在中,.
在中,,过D作的平行线交于点Q.
在中,.
在中,由余弦定理得,,,
,,
当,即,面与面所成的二面角的正弦值最小,最小值为.
【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.
第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面与面所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面在面上的投影三角形的面积与面积之比即为面与面所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.
18.(2023秋·陕西西安·高二西安市铁一中学校考期末)设直线的方程为.
(1)求证:不论为何值,直线必过一定点;
(2)若直线分别与轴正半轴,轴正半轴交于点,,当面积最小时,求的周长及此时的直线方程;
(3)当直线在两坐标轴上的截距均为正整数且a也为正整数时,求直线的方程.
【答案】(1)证明见解析;(2)周长为;直线方程为;(3).
【分析】(1)将直线方程重新整理,转化为求两直线交点,即得证;
(2)先求A,B坐标且确定的取值范围,再根据三角形面积公式列函数关系式,根据基本不等式求最值,确定的值,最后求周长以及直线方程;
(3)根据截距均为正整数,利用分离法,结合整除确定的值,再求直线方程.
【详解】解:(1)由得,
则,解得,
所以不论为何值,直线必过一定点;
(2)由得,
当时,,当时,,
又由,得,
,
当且仅当,即时,取等号.
,,
的周长为;
直线方程为.
(3) 直线在两坐标轴上的截距均为正整数,
即,均为正整数,而a也为正整数,
所以直线的方程为.
【点睛】本题考查直线恒过定点问题、利用基本不等式求最值、直线与坐标轴围成的三角形的面积的最值、分离法求正整数解,考查综合分析求解能力,属中档题.
19.(2022秋·陕西西安·高二西北大学附中校考期中)如图所示,已知空间四边形的每条边和对角线都等于1,点分别是的中点,设为空间向量的一组基底,计算:(1);(2).
【答案】(1) ;(2) .
【分析】(1)先根据条件确定的模以及相互之间的夹角,再根据向量共线以及加减法表示,最后根据向量数量积求结果,(2)根据向量减法表示,再根据向量模的定义以及向量数量积求结果.
【详解】(1) 因为空间四边形的每条边和对角线都等于1,
所以 ,
因为点分别是的中点,所以,
(2)因为,所以
【点睛】本题考查向量表示以及向量数量积,考查基本分析求解能力,属基础题.
20.(2022春·陕西西安·高二西北工业大学附属中学校考阶段练习)设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
【答案】(1);(2)或.
【分析】(1)方法一:根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;
(2)方法一:先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.
【详解】(1)[方法一]:【通性通法】焦点弦的弦长公式的应用
由题意得,设直线l的方程为.
设,由得.
,故.
所以.
由题设知,解得(舍去)或.因此l的方程为.
[方法二]:弦长公式的应用
由题意得,设直线l的方程为.
设,则由得.
,由,解得(舍去)或.因此直线l的方程为.
[方法三]:【最优解】焦点弦的弦长公式的应用
设直线l的倾斜角为,则焦点弦,解得,即.因为斜率,所以.
而抛物线焦点为,故直线l的方程为.
[方法四]:直线参数方程中的弦长公式应用
由题意知,可设直线l的参数方程为(t为参数).
代入整理得.
设两根为,则.
由,解得.
因为,所以,因此直线l的参数方程为
故直线l的普通方程为.
[方法五]:【最优解】极坐标方程的应用
以点F为极点,以x轴的正半轴为极轴建立极坐标系,此时抛物线的极坐标方程为.
设,由题意得,解得,即.
所以直线l的方程为.
(2)[方法一]:【最优解】利用圆的几何性质求方程
由(1)得AB的中点坐标为,所以AB的垂直平分线方程为
,即.
设所求圆的圆心坐标为,则
解得或,
因此所求圆的方程为或.
[方法二]:硬算求解
由题意可知,抛物线C的准线为,所求圆与准线相切.
设圆心为,则所求圆的半径为.
由得.
所以,
解得或,
所以,所求圆的方程为或.
【整体点评】(1)方法一:根据弦过焦点,选择焦点弦长公式运算,属于通性通法;
方法二:直接根据一般的弦长公式硬算,是解决弦长问题的一般解法;
方法三:根据弦过焦点,选择含直线倾斜角的焦点弦长公式,计算简单,属于最优解;
方法四:根据直线参数方程中的弦长公式,利用参数的几何意义运算;
方法五:根据抛物线的极坐标方程,利用极径的意义求解,计算简单,也是该题的最优解.
(2)方法一:根据圆的几何性质确定圆心位置,再根据直线与圆的位置关系算出,是求圆的方程的最优解;
方法二:直接根据圆经过两点,硬算,思想简单,运算相对复杂.
21.(2023秋·陕西西安·高三西安市铁一中学校考阶段练习)如图,已知多面体均垂直于平面.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【分析】(Ⅰ)方法一:通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论;
(Ⅱ)方法一:找出直线AC1与平面ABB1所成的角,再在直角三角形中求解即可.
【详解】(Ⅰ)[方法一]:几何法
由得,
所以,即有.
由,得,
由得,
由,得,所以,即有,又,因此平面.
[方法二]:向量法
如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.
由题意知各点坐标如下:
因此,
由得;由得,
所以平面.
(Ⅱ)[方法一]:定义法
如图,过点作,交直线于点,连结.
由平面得平面平面,
由得平面,
所以是与平面所成的角.
由得,
所以,故.
因此,直线与平面所成的角的正弦值是.
[方法二]:向量法
设直线与平面所成的角为.
由(I)可知,
设平面的法向量.
由即,可取,
所以.
因此,直线与平面所成的角的正弦值是.
[方法三]:【最优解】定义法+等积法
设直线与平面所成角为,点到平面距离为d(下同).因为平面,所以点C到平面的距离等于点到平面的距离.由条件易得,点C到平面的距离等于点C到直线的距离,而点C到直线的距离为,所以.故.
[方法四]:定义法+等积法
设直线与平面所成的角为,由条件易得,所以,因此.
于是得,易得.
由得,解得.
故.
[方法五]:三正弦定理的应用
设直线与平面所成的角为,易知二面角的平面角为,易得,
所以由三正弦定理得.
[方法六]:三余弦定理的应用
设直线与平面所成的角为,如图2,过点C作,垂足为G,易得平面,所以可看作平面的一个法向量.
结合三余弦定理得.
[方法七]:转化法+定义法
如图3,延长线段至E,使得.
联结,易得,所以与平面所成角等于直线与平面所成角.过点C作,垂足为G,联结,易得平面,因此为在平面上的射影,所以为直线与平面所成的角.易得,,因此.
[方法八]:定义法+等积法
如图4,延长交于点E,易知,又,所以,故面.设点到平面的距离为h,由得,解得.
又,设直线与平面所成角为,所以.
【整体点评】(Ⅰ)方法一:通过线面垂直的判定定理证出,是该题的通性通法;
方法二: 通过建系,根据数量积为零,证出;
(Ⅱ)方法一:根据线面角的定义以及几何法求线面角的步骤,“一作二证三计算”解出;
方法二:根据线面角的向量公式求出;
方法三:根据线面角的定义以及计算公式,由等积法求出点面距,即可求出,该法是本题的最优解;
方法四:基本解题思想同方法三,只是求点面距的方式不同;
方法五:直接利用三正弦定理求出;
方法六:直接利用三余弦定理求出;
方法七:通过直线平移,利用等价转化思想和线面角的定义解出;
方法八:通过等价转化以及线面角的定义,计算公式,由等积法求出点面距,即求出.
22.(2022·陕西西安·西北工业大学附属中学校考一模)如图,该几何体是由等高的半个圆柱和个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.
(1)证明:平面BDF⊥平面BCG;
(2)若平面BDF与平面ABG所成二面角的余弦值为,求直线DF与平面ABF所成角的大小.
【答案】(1)证明见解析;
(2).
【分析】(1)过作,交底面弧于,连接,有为平行四边形,根据题设可得,即,再由线面垂直的性质可得,最后根据线面、面面垂直的判定即可证结论.
(2)构建如下图示空间直角坐标系,令半圆柱半径为,高为,确定相关点坐标,进而求面、面的法向量,利用空间向量夹角的坐标表示及已知条件可得,再找到直线DF与平面ABF所成角的平面角,求其大小即可.
【详解】(1)过作,交底面弧于,连接,易知:为平行四边形,
所以,又G为弧CD的中点,则是弧的中点,
所以,而由题设知:,则,
所以,即,
由底面,面,则,又,
所以面,又面,
所以面面.
(2)由题意,构建如下图示空间直角坐标系,
令半圆柱半径为,高为,则,,,,
所以,,,,
若是面的一个法向量,则,令,则,
若是面的一个法向量,则,令,则,
所以,整理可得,则,
由题设知:面,则直线DF与平面ABF所成角,故,即.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2023-2024学年高二数学上学期期中精选名校测试卷(陕西2)
(本试卷满分150分,考试时间120分钟)
测试范围:选择性必修第一册(人教A版2019)第一章、第二章
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2023春·陕西西安·高一长安一中校考期末)已知MN是正方体内切球的一条直径,点Р在正方体表面上运动,正方体的棱长是2,则的取值范围为( )
A. B. C. D.
2.(2022春·陕西商洛·高一陕西省丹凤中学校考阶段练习)已知直线的方程为,则直线的倾斜角范围是( )
A. B.
C. D.
3.(2021秋·陕西西安·高二西安中学校考期末)对于空间任意一点和不共线的三点,,,且有,则,,是,,,四点共面的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分又不必要条件
4.(2022秋·陕西咸阳·高一武功县普集高级中学校考期末)下列直线中,倾斜角为45°的是( )
A. B.
C. D.
5.(2023春·陕西宝鸡·高二虢镇中学校考开学考试)若,,且,的夹角的余弦值为,则等于( )
A.2 B. C.或 D.2或
6.(2022春·陕西咸阳·高二武功县普集高级中学校考阶段练习)已知O为坐标原点,直线上存在一点P,使得,则k的取值范围为( )
A. B.
C. D.
7.(2022·陕西西安·交大附中校考模拟预测)在矩形中,,,沿对角线将矩形折成一个大小为的二面角,若,则下列结论中正确结论的个数为( )
①四面体外接球的表面积为
②点与点之间的距离为
③四面体的体积为
④异面直线与所成的角为
A. B. C. D.
8.(2022春·陕西榆林·高一陕西省神木中学校联考期末)已知直线与圆交于两个不同点,则当弦最短时,圆与圆的位置关系是( )
A.内切 B.相离 C.外切 D.相交
二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)
9.(2023秋·陕西西安·高二西安市铁一中学校考期末)在平面直角坐标系中,已知圆,其中,则( )
A.圆过定点 B.圆的圆心在定直线上
C.圆与定直线相切 D.圆与定圆相切
10.(2022·陕西西安·高二西安中学校联考期末)已知向量,则与共线的单位向量( )
A. B.
C. D.
11.(2022秋·陕西西安·高一西安建筑科技大学附属中学校考期末)已知直线,则下列结论正确的是( )
A.直线的倾斜角是
B.若直线,则
C.点到直线的距离是2
D.过与直线平行的直线方程是
12.(2023秋·陕西西安·高二校考阶段练习)如图,在四棱锥中,底面是边长为2的正方形,为等边三角形,平面平面,点在线段上,,交于点,则下列结论正确的是( )
A.若平面,则为的中点
B.若为的中点,则三棱锥的体积为
C.锐二面角的大小为
D.若,则直线与平面所成角的余弦值为
三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
13.(2022春·陕西西安·高一长安一中校考阶段练习)如图,已知一个的二面角的棱上有两点和,且和分别是在这两个面内且垂直于的线段.又知,,,则求CD的长为 .
14.(2022·陕西西安·西安中学校考模拟预测)直线和直线垂直,则实数 .
15.(2020秋·陕西西安·高二西安中学校考期末)已知,,,为空间中不共面的四点,且,若,,,四点共面,则实数 .
16.(2021春·陕西西安·高一西安交通大学附属中学航天学校校考开学考试)已知直线和互相平行,则实数的值为 .
四、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(2022春·陕西西安·高二西北工业大学附属中学校考阶段练习)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小
18.(2023秋·陕西西安·高二西安市铁一中学校考期末)设直线的方程为.
(1)求证:不论为何值,直线必过一定点;
(2)若直线分别与轴正半轴,轴正半轴交于点,,当面积最小时,求的周长及此时的直线方程;
(3)当直线在两坐标轴上的截距均为正整数且a也为正整数时,求直线的方程.
19.(2022秋·陕西西安·高二西北大学附中校考期中)如图所示,已知空间四边形的每条边和对角线都等于1,点分别是的中点,设为空间向量的一组基底,计算:(1);(2).
20.(2022春·陕西西安·高二西北工业大学附属中学校考阶段练习)设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
21.(2023秋·陕西西安·高三西安市铁一中学校考阶段练习)如图,已知多面体均垂直于平面.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
22.(2022·陕西西安·西北工业大学附属中学校考一模)如图,该几何体是由等高的半个圆柱和个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.
(1)证明:平面BDF⊥平面BCG;
(2)若平面BDF与平面ABG所成二面角的余弦值为,求直线DF与平面ABF所成角的大小.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)