沪教版高三单元试卷:第17章 概率论初步
一、选择题(共8小题)
1.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A.0.648 B.0.432 C.0.36 D.0.312
2.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A. B. C. D.1
3.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )
A.0.4 B.0.6 C.0.8 D.1
4.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )
A. B. C. D.
5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
6.掷两颗均匀的骰子,则点数之和为5的概率等于( )
A. B. C. D.
7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A. B. C. D.
8.在集合1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量=(a,b)从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作为平行四边形的个数为n,其中面积不超过4的平行四边形的个数m,则=( )
A. B. C. D.
二、填空题(共7小题)
9.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 .
10.从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为 .
11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .
12.从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是 .
13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是 .
14.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .
15.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).
三、解答题(共15小题)
16.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.
(Ⅰ)用球的标号列出所有可能的摸出结果;
(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
甲 乙 丙 丁
100 √ × √ √
217 × √ × √
200 √ √ √ ×
300 √ × √ ×
85 √ × × ×
98 × √ × ×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
18.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
19.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 未参加书法社团
参加演讲社团 8 5
未参加演讲社团 2 30
(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
20.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 A B C
数量 50 150 100
(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;
(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
21.某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:
一年级 二年级 三年级
男同学 A B C
女同学 X Y Z
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(Ⅰ)用表中字母列举出所有可能的结果;
(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
22.一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.
(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.
23.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
24.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.
(1)求从该批产品中任取1件是二等品的概率p;
(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).
25.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为.
(Ⅰ)求一投保人在一年度内出险的概率p;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
26.甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
27.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别 A B C D E
人数 50 100 150 150 50
(Ⅰ)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.
组别 A B C D E
人数 50 100 150 150 50
抽取人数 6
(Ⅱ)在(Ⅰ)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
28.设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.
29.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 低于70分 70分到89分 不低于90分
满意度等级 不满意 满意 非常满意
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
30.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.
参考答案与试题解析
一、选择题(共8小题)
1. 解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为=0.648.
故选:A.
2. 解:这是一个古典概型,从15个球中任取2个球的取法有;
∴基本事件总数为105;
设“所取的2个球中恰有1个白球,1个红球”为事件A;
则A包含的基本事件个数为=50;
∴P(A)=.
故选:B.
3. 解:这是一个古典概型,从5件产品中任取2件的取法为;
∴基本事件总数为10;
设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;
∴P(A)==0.6.
故选:B.
4. 解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,
周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,
∴所求概率为=.
故选:D.
5. 解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,
解得p=0.8,
故选:A.
6. 解:抛掷两颗骰子所出现的不同结果数是6×6=36
事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种
故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,
故选:B.
7. 解:设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,则==.
因此P(A)=1﹣P()=1﹣=.
故选:D.
8. 解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是从数字中选出两个数字,组成向量,
a的取法有2种,b的取法有3种,故向量=(a,b)有6个,
从中任取两个向量共C62=15种结果,
满足条件的事件是平行四边形的面积不超过4的由列举法列出共有5个,
根据等可能事件的概率得到P==
故选:B.
二、填空题(共7小题)
9. 解:根据题意,记白球为A,红球为B,黄球为C1、C2,则
一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,
其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;
所以所求的概率是P=,
故答案为:.
10. 解:从字母a,b,c,d,e中任取两个不同字母,共有=10种情况,取到字母a,共有=4种情况,
∴所求概率为=.
故答案为:.
11. 解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,
故他们选择相同颜色运动服的概率为 =,
故答案为:.
12. 解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,
所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,
故所求概率P=.
故答案为:.
13. 解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是从10件中取4件有C104种结果,
满足条件的事件是恰好有1件次品有种结果,
∴恰好有一件次品的概率是P==
故答案为:
14. 解:2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有共有=6种结果,
其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故本数学书相邻的概率P=.
故答案为:.
15. 解:在未来的连续10天中随机选择3天共有种情况,
其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),
(5,6,7),(6,7,8),(7,8,9),(8,9,10),
∴选择的3天恰好为连续3天的概率是,
故答案为:.
三、解答题(共15小题)
16. 解:(Ⅰ)所有可能的摸出的结果是:
{A1,a1 },{A1,a2 },{A1,b1 },{A1,b2 },{A2,a1 },{A2,a2 },
{A2,b1 },{A2,b2 },{B,a1 },{B,a2 },{B,b1 },{B,b2};
(Ⅱ)不正确.理由如下:
由(Ⅰ)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为:
{A1,a1 },{A1,a2 },{A2,a1 },{A2,a2 },共4种,
∴中奖的概率为.
不中奖的概率为:1﹣.
故这种说法不正确.
17. 解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,
故顾客同时购买乙和丙的概率为=0.2.
(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),
故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.
(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,
同时购买甲和丙的概率为=0.6,
同时购买甲和丁的概率为=0.1,
故同时购买甲和丙的概率最大.
18. 解:(Ⅰ)由题意可得抽取比例为=,
27×=3,9×=1,18×=2,
∴应甲、乙、丙三个协会中分别抽取的运动员的人数为3、1、2;
(Ⅱ)(i)从6名运动员中随机抽取2名的所有结果为:
(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),
(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),
(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),
共15种;
(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,
则事件A包含:(A1,A5),(A1,A6),(A2,A5),(A2,A6),
(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6)共9个基本事件,
∴事件A发生的概率P==
19. 解:(Ⅰ)设“至少参加一个社团”为事件A;
从45名同学中任选一名有45种选法,∴基本事件数为45;
通过列表可知事件A的基本事件数为8+2+5=15;
这是一个古典概型,∴P(A)=;
(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;
∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;
设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;
这是一个古典概型,∴.
20. 解:(Ⅰ)A,B,C三个地区商品的总数量为50+150+100=300,
故抽样比k==,
故A地区抽取的商品的数量为:×50=1;
B地区抽取的商品的数量为:×150=3;
C地区抽取的商品的数量为:×100=2;
(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;
且这些事件是等可能发生的,
记“这2件商品来自相同地区”为事件A,则这2件商品可能都来自B地区或C地区,
则A中包含=4种不同的基本事件,
故P(A)=,
即这2件商品来自相同地区的概率为.
21. 解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、
(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、
(X,Z )、(Y,Z),共计15个结果.
(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,
则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,
故事件M发生的概率为 =.
22. 解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,
而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,
故“抽取的卡片上的数字满足a+b=c”的概率为=.
(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:
(1,1,1)、(2,2,2)、(3,3,3),共计三个,
故“抽取的卡片上的数字a,b,c完全相同”的概率为=,
∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.
23. 解:(I)设该车主购买乙种保险的概率为p,
根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,
该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,
由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8
(II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.
24. 解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.
则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)
=P(A0)+P(A1)
=(1﹣p)2+C21p(1﹣p)
=1﹣p2
于是0.96=1﹣p2.
解得p1=0.2,p2=﹣0.2(舍去).
(2)记B0表示事件“取出的2件产品中无二等品”,
则.
若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.
25. 解:由题意知
各投保人是否出险互相独立,且出险的概率都是p,
记投保的10000人中出险的人数为ξ,
由题意知ξ~B(104,p).
(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,
则发生当且仅当ξ=0,
=1﹣P(ξ=0)=1﹣,
又P(A)=,
故p=0.001.
(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.
支出10000ξ+50000,
盈利η=10000a﹣(10000ξ+50000),
盈利的期望为Eη=10000a﹣10000Eξ﹣50000,
由ξ~B(104,10﹣3)知,
Eξ=10000×10﹣3,
Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.
Eη≥0 104a﹣104×10﹣5×104≥0 a﹣10﹣5≥0 a≥15(元).
∴每位投保人应交纳的最低保费为15元.
26. 解:记A1,A2分别表示甲击中9环,10环,B1,B2分别表示乙击中8环,9环,
A表示在一轮比赛中甲击中的环数多于乙击中的环数,
B表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,
C1,C2分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.
(Ⅰ)甲、乙的射击相互独立
在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,
用事件分别表示为A=A1 B1+A2 B1+A2 B2,且这三种情况是互斥的,
根据互斥事件和相互独立事件的概率公式得到
∴P(A)=P(A1 B1+A2 B1+A2 B2)=P(A1 B1)+P(A2 B1)+P(A2 B2)
=P(A1) P(B1)+P(A2) P(B1)+P(A2) P(B2)
=0.3×0.4+0.1×0.4+0.1×0.4=0.2.
(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,
∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,
P(C2)=[P(A)]3=0.23=0.008,
∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.
27. 解:(Ⅰ)按相同的比例从不同的组中抽取人数.
从B组100人中抽取6人,即从50人中抽取3人,从150人中抽取6人,填表如下:
组别 A B C D E
人数 50 100 150 150 50
抽取人数 3 6 9 9 3
(Ⅱ)A组抽取的3人中有2人支持1好歌手,则从3人中任选1人,支持1号歌手的概率为.
B组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持1号歌手的概率为.
现从这两组被抽到的评委中分别任选1人,则2人都支持1号歌手的概率p=.
28. 解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为
0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.
(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.
若k=3,则“同一工作日需使用设备的人数大于3”的概率为 0.6×0.5×0.5×0.4=0.06<0.1,满足条件.
故k的最小值为3.
29. 解:(1)两地区用户满意度评分的茎叶图如下
通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;
(2)记CA1表示事件“A地区用户满意度等级为满意或非常满意”,
记CA2表示事件“A地区用户满意度等级为非常满意”,
记CB1表示事件“B地区用户满意度等级为不满意”,
记CB2表示事件“B地区用户满意度等级为满意”,
则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,
则C=CA1CB1∪CA2CB2,
P(C)=P(CA1CB1)+P(CA2CB2)=P(CA1)P(CB1)+P(CA2)P(CB2),
由所给的数据CA1,CA2,CB1,CB2,发生的频率为,,,,
所以P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=,
所以P(C)=×+×=0.48.
30.解:(Ⅰ)设该车主购买乙种保险的概率为P,则P(1﹣0.5)=0.3,故P=0.6,
该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,
由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8
(Ⅱ)甲、乙两种保险都不购买的概率为0.2,X~B(100,0.2)
所以EX=100×0.2=20