1.2.1任意角的三角函数(第1课时)
瓶窑中学 王 端 府
一、教学目标:
1、知识与技能
(1)理解任意角三角函数(正弦、余弦、正切)的定义;
(2)能判断各象限角的正弦、余弦、正切函数的符号;
(3)掌握由已知角终边上一点的坐标,求该角的三个三角函数值。
2、过程与方法
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.
3、情态与价值
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
二、教学重、难点
重点: 任意角三角函数的定义。
难点: 用单位圆上点的坐标定义三角函数。
三、学法与教学用具
学 法:引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上的点的坐标或坐标比来表示任意角的三角函数,渗透化归思想和逻辑思维能力。
教学用具:多媒体、三角板、圆规。
四、教学过程
【创设情境】
提问:锐角的正弦、余弦、正切怎样表示?
借助右图直角三角形,复习回顾.
引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。
数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗
思考:对于确定的角,这三个比值是否会随点在的终边
上的位置的改变而改变呢?如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;
; .
思考:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?
显然,我们可以将点取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:
; ; .
思考:上述锐角的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.
【探究新知】
1.探究:结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢
2.思考:如何利用单位圆定义任意角的三角函数的定义
设是一个任意角,它的终边与单位圆交于点,那么:
(1)叫做的正弦(sine),记做,即;
(2)叫做的余弦(cossine),记做,即;
(3)叫做的正切(tangent),记做,即.
注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而必然能够最终算出三角函数值.
3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢
前面我们已经知道,三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,
.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.
【例题讲评】
例1.求的正弦、余弦和正切值.
例2.已知角的终边过点,求角的正弦、余弦和正切值.
教材给出这两个例题,主要是帮助理解任意角的三角函数定义.
也可以尝试其他方法:如例2:设则.
于是 ,,.
巩固练习第1,2题
探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:
三角函数 定义域 第一象限 第二象限 第三象限 第四象限
例3.求证:当且仅当不等式组成立时,角为第三象限角.
【学习小结】
(1)本节的三角函数定义与初中时的定义有何异同
(2)你能准确判断三角函数值在各象限内的符号吗
(3)请写出各三角函数的定义域;
【作业设计】
作业:作业本A.
y
P(a,b)
r
O M
y
x
O
P(x,y)
a的终边
PAGE
1