2014-2015学年高中数学(北师大版,必修一)【课时作业与单元检测】第四章 函数应用(7份)

文档属性

名称 2014-2015学年高中数学(北师大版,必修一)【课时作业与单元检测】第四章 函数应用(7份)
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2015-01-28 14:42:24

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第四章 章末检测(A)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.函数y=1+的零点是(  )
A.(-1,0) B.-1
C.1 D.0
2.设函数y=x3与y=()x-2的图像的交点为(x0,y0),则x0所在的区间是(  )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
3.某企业2010年12月份的产值是这年1月份产值的P倍,则该企业2010年度产值的月平均增长率为(  )21cnjy.com
A. B.-1
C. D.
4.如图所示的函数图像与x轴均有交点,其中不能用二分法求图中交点横坐标的是(  )
A.①③ B.②④
C.①② D.③④
5.如图1,直角梯形OABC中,AB∥ ( http: / / www.21cnjy.com )OC,|AB|=1,|OC|=|BC|=2,直线l∶x=t截此梯形所得位于l左方图形面积为S,则函数S=f(t)的图像大致为图中的(  )
图1
6.已知在x克a%的盐水中,加入y克b%的盐水,浓度变为c%,将y表示成x的函数关系式为(  )
A.y=x B.y=x
C.y=x D.y=x
7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是(  )
(下列数据仅供参考:=1.41,=1.73,=1.44,
=1.38)
A.38% B.41%
C.44% D.73%
8.某工厂生产某种产品的固定成本为 ( http: / / www.21cnjy.com )200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R是单位产量Q的函数:R(Q)=4Q-Q2,则总利润L(Q)的最大值和这时产品的生产数量分别为(总利润=总收入-成本)(  )
A.250 300 B.300 350
C.250 350 D.300 300
9.在一次数学实验中,运用图形计算器采集到如下一组数据:
x -2.0 -1.0 0 1.00 2.00 3.00
y 0.24 0.51 1 2.02 3.98 8.02
则x、y的函数关系与下列哪类函数最接近?(其中a、b为待定系数)(  )
A.y=a+bx B.y=a+bx
C.y=ax2+b D.y=a+
10.根据统计资料,我国能源生产自1 ( http: / / www.21cnjy.com )986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?(  )【来源:21·世纪·教育·网】
A.一次函数 B.二次函数
C.指数函数 D.对数函数
11.用二分法判断方程2x3+3x-3 ( http: / / www.21cnjy.com )=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)(  )www-2-1-cnjy-com
A.0.25 B.0.375
C.0.635 D.0.825
12.有浓度为90%的溶 ( http: / / www.21cnjy.com )液100 g,从中倒出10 g后再倒入10 g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)(  )  21*cnjy*com
A.19 B.20
C.21 D.22
题 号 1 2 3 4 5 6 7 8 9 10 11 12
答 案
二、填空题(本大题共4小题,每小题5分,共20分)
13.用二分法研究函数f(x)=x ( http: / / www.21cnjy.com )3+2x-1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次计算的f(x)的值为f(________).
14.若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围为________.
15.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为________万元.www.21-cn-jy.com
16.函数f(x)=x2-2x+b的零点均是正数,则实数b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1 200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.2·1·c·n·j·y
(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x的取值范围.2-1-c-n-j-y
(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.
18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.【出处:21教育名师】
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃后,光线强度减弱到原来的以下?(lg 3≈0.477 1)
19.(12分)某医药研 ( http: / / www.21cnjy.com )究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA是线段,曲线AB是函数y=kat(t≥1,a>0,且k,a是常数)的图像.
(1)写出服药后y关于t的函数关系式;
(2)据测定,每毫升血液中的含药量 ( http: / / www.21cnjy.com )不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克) 【版权所有:21教育】
20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3,
(1)求f(x)的解析式;
(2)判断函数g(x)=-1+lg f2(x)在区间[0,9]上零点的个数.
21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y亿.21教育网
(1)求y与x的函数关系式y=f(x);
(2)求函数y=f(x)的定义域;
(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.
22.(12分)某厂生产某种零件 ( http: / / www.21cnjy.com ),每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.【来源:21cnj*y.co*m】
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数的表达式;
(3)当销售商一次订购500个零件 ( http: / / www.21cnjy.com )时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
第四章 章末检测(A)
1.B[ 由1+=0,得=-1,∴x=-1.]
2.B [由题意x0为方程x3=()x-2的根,
令f(x)=x3-22-x,
∵f(0)=-4<0,f(1)=-1<0,f(2)=7>0,
∴x0∈(1,2).]
3.B [设1月份产值为a,增长率为x,则aP=a(1+x)11,
∴x=-1.]
4.A [对于①③在函数零点两侧函数值的符号相同,
故不能用二分法求.]
5.C [解析式为S=f(t)


∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]
6.B [根据配制前后溶质不变,有等式a%x+b%y=c%(x+y),
即ax+by=cx+cy,故y=x.]
7.B [设职工原工资为p,平均增长率为x,
则p(1+x)6=8p,x=-1=-1=41%.]
8.A [L(Q)=4Q- ( http: / / www.21cnjy.com )Q2-Q-200=-(Q-300)2+250,故总利润L(Q)的最大值是250万元,这时产品的生产数量为300.]21·cn·jy·com
9.B [∵x=0时,无意义,
∴D不成立.
由对应数据显示该函数是增函数,且增幅越来越快,
∴A不成立.
∵C是偶函数,
∴x=±1的值应该相等,故C不成立.
对于B,当x=0时,y=1,
∴a+1=1,a=0;
当x=1时,y=b=2.02,经验证它与各数据比较接近.]
10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]21·世纪*教育网
11.C [令f(x)=2x3+3x-3,f(0)<0,f(1)>0,f(0.5)<0,
f(0.75)>0,f(0.625)<0,∴方程2x3+3x-3=0的根在区间(0.625,0.75)内,
∵0.75-0.625=0.125<0.25,
∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]
12.C [操作次数为n时的浓度为()n+1,由()n+1<10%,
得n+1>=≈21.8,
∴n≥21.]
13.(0,0.5) 0.25
解析 根据函数零点的存在性定理.
∵f(0)<0,f(0.5)>0,
∴在(0,0.5)存在一个零点,第二次计算找中点,
即=0.25.
14.(1,+∞)
解析 函数f(x)的零点的个数 ( http: / / www.21cnjy.com )就是函数y=ax与函数y=x+a交点的个数,如下图,由函数的图像可知a>1时两函数图像有两个交点,01.
15.a(1-b%)n
解析 第一年后这批设备的价值为a(1-b%);
第二年后这批设备的价值为a(1-b%)-a(1-b%)·b%
=a(1-b%)2;
故第n年后这批设备的价值为a(1-b%)n.
16.(0,1]
解析 设x1,x2是函数f(x)的零点,则x1,x2为方程x2-2x+b=0的两正根,
则有,即.
解得017.解 (1)依题意得y=5x+10(1 200-x)
=-5x+12 000,0≤x≤1 200.
(2)∵1 200×65%≤x≤1 200×85%,
解得780≤x≤1 020,
而y=-5x+12 000在[780,1 020]上为减函数,
∴-5×1 020+12 000≤y≤-5×780+12 000.
即6 900≤y≤8 100,
∴国庆这天停车场收费的金额范围为[6 900,8 100].
18.解 (1)依题意:y=a·0.9x,x∈N+.
(2)依题意:y≤a,
即:a·0.9x≤,0.9x≤=,
得x≥log0.9=≈-≈10.42.
答 通过至少11块玻璃后,光线强度减弱到原来的以下.
19.解 (1)当0≤t<1时,y=8t;
当t≥1时,∴
∴y=
(2)令8·()t≥2,解得t≤5.
∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药.
(3)第二次服药后3小时,每毫升血液中含第一 ( http: / / www.21cnjy.com )次所服药的药量为y1=8×()8=(微克);含第二次服药后药量为y2=8×()3=4(微克),y1+y2=+4≈4.7(微克).
故第二次服药再过3小时,
该病人每毫升血液中含药量为4.7微克.
20.解 (1)令f(x)=ax+b,由已知条件得
,解得a=b=1,
所以f(x)=x+1(x∈R).
(2)∵g(x)=-1+lg f2(x)=-1+lg (x+1)2在区间[0,9]上为增函数,且g(0)=-1<0,
g(9)=-1+lg 102=1>0,
∴函数g(x)在区间[0,9]上零点的个数为1个.
21.解 (1)2009年底人口数:13.56亿.
经过1年,2010年底人口数:
13.56+13.56×1%=13.56×(1+1%)(亿).
经过2年,2011年底人口数:
13.56×(1+1%)+13.56×(1+1%)×1%
=13.56×(1+1%)2(亿).
经过3年,2012年底人口数:
13.56×(1+1%)2+13.56×(1+1%)2×1%
=13.56×(1+1%)3(亿).
∴经过的年数与(1+1%)的指数相同.
∴经过x年后人口数为13.56×(1+1%)x(亿).
∴y=f(x)=13.56×(1+1%)x.
(2)理论上指数函数定义域为R.
∵此问题以年作为时间单位.
∴此函数的定义域是{x|x∈N+}.
(3)y=f(x)=13.56×(1+1%)x.
∵1+1%>1,13.56>0,
∴y=f(x)=13.56×(1+1%)x是增函数,
即只要递增率为正数,随着时间的推移,人口的总数总在增长.
22.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+=550.21世纪教育网版权所有
因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.
(2)当0当100当x≥550时,P=51.
所以P=f(x)=(x∈N).
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,
则L=(P-40)x=(x∈N).
当x=500时,L=6 000;
当x=1 000时,L=11 000.
因此,当销售商一次订购500个零件时,
该厂获得的利润是6 000元;
如果订购1 000个,利润是11 000元.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第四章 章末检测(B)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)f(2)·f(4)<0,则下列命题中正确的是(  )21·cn·jy·com
A.函数f(x)在区间(0,1)内有零点
B.函数f(x)在区间(1,2)内有零点
C.函数f(x)在区间(0,2)内有零点
D.函数f(x)在区间(0,4)内有零点
2.将进货单价为80元的商品按 ( http: / / www.21cnjy.com )90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为(  )
A.每个110元 B.每个105元
C.每个100元 D.每个95元
3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是(  )【来源:21·世纪·教育·网】
t 1.99 3.0 4.0 5.1 6.12
y 1.5 4.04 7.5 12 18.01
A.y=log2t B.y=t
C.y= D.y=2t-2
4.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是(  )
A.413.7元 B.513.7元
C.548.7元 D.546.6元
5.方程x2+ax-2=0在区间[1,5]上有解,则实数a的取值范围为(  )
A.(-,+∞) B.(1,+∞)
C.[-,1] D.(-∞,-]
6.设f(x)是区间[a,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b](  )
A.至少有一实根 B.至多有一实根
C.没有实根 D.必有唯一实根
7.方程x2-(2-a)x+5-a=0的两根都大于2,则实数a的取值范围是(  )
A.a<-2 B.-5C.-54或a<-4
8.四人赛跑,其跑过的路程f(x)和时间x的关系分别是:f1(x)=,f2(x)=x,f3(x)=log2(x+1),f4(x)=log8(x+1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是(  )2·1·c·n·j·y
A.f1(x)= B.f2(x)=x
C.f3(x)=log2(x+1) D.f4(x)=log8(x+1)www-2-1-cnjy-com
9.函数f(x)=ln x-的零点所在的大致区间是(  )
A.(1,2) B.(2,3)
C.(e,3) D.(e,+∞)
10.已知f(x)=(x-a)(x-b)-2的两个零点分别为α,β,则(  )
A.a<αC.a<α<β11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f()的所有x之和为(  )2-1-c-n-j-y
A.- B.-
C.-8 D.8
12.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图像如图所示.现给出下面说法:【版权所有:21教育】
①前5分钟温度增加的速度越来越快;
②前5分钟温度增加的速度越来越慢;
③5分钟以后温度保持匀速增加;
④5分钟以后温度保持不变.
其中正确的说法是(  )
A.①④ B.②④ C.②③ D.①③
题 号 1 2 3 4 5 6 7 8 9 10 11 12
答 案
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知函数f(x)=,且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是______________.21教育名师原创作品
14.要建造一个长方体形状的仓库,其内部的高为3 m,长与宽的和为20 m,则仓库容积的最大值为________.21*cnjy*com
15.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围为________.
16.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)讨论方程4x3+x-15=0在[1,2]内实数解的存在性,并说明理由.
18.(12分)(1)已知f(x)=+m是奇函数,求常数m的值;
(2)画出函数y=|3x-1|的图像,并利用图像回答:k为何值时,方程|3x-1|=k无解?有一解?有两解?
19.(12分)某出版公司为一本畅销书定价如下:
C(n)=这里n表示定购书的数量,C(n)是定购n本书所付的钱数(单位:元).
若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?21教育网
20.(12分)是否存在这样的实数a,使函数 ( http: / / www.21cnjy.com )f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.
21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.21·世纪*教育网
22.(12分)我国是水资 ( http: / / www.21cnjy.com )源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:www.21-cn-jy.com
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份 用水量(立方米) 水费(元)
一 4 17
二 5 23
三 2.5 11
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
第四章 章末检测(B)
1.D [由f(0)>0, ( http: / / www.21cnjy.com )f(1)f(2)f(4)<0,则f(1),f(2),f(4)三者中必有一个与其余两个异号,所以必有根在(0,4)内.]【来源:21cnj*y.co*m】
2.D [设售价为x元,则利润
y=[400-20(x-90)](x-80)=20(110-x)(x-80)
=-20(x2-190x+8 800)
=-20(x-95)2+4 500.
∴当x=95时,y最大为4 500元.]
3.C [当t=4时,y=log24=2,y=4=-2,y==7.5,y=2×4-2=6.
所以y=适合,
当t=1.99代入A、B、C、D4个选项,y=的值与表中的1.5接近,故选C.]
4.D [购物超过200元,至少付款 ( http: / / www.21cnjy.com )200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]
5.C [令f(x)=x2+ax-2,
则f(0)=-2<0,
∴要使f(x)在[1,5]上与x轴有交点,则需要

即,
解得-≤a≤1.]
6.D [∵f(a)·f(b)<0,∴f(x)在区间[a,b]上存在零点,
又∵f(x)在[a,b]上是单调函数,∴f(x)在区间[a,b]上的零点唯一,即f(x)=0在[a,b]上必有唯一实根.]21世纪教育网版权所有
7.C [由题意知,解得-58.B [在同一坐标系下画出四个函数的图像,由图像可知f2(x)=x增长的最快.]
9.B [f(2)=ln 2-=ln 2-1<1-1=0,
f(3)=ln 3->1-=>0.
故零点所在区间为(2,3).]
10.B [设g(x)=(x-a)(x- ( http: / / www.21cnjy.com )b),则f(x)是由g(x)的图像向下平移2个单位得到的,而g(x)的两个零点为a,b,f(x)的两个零点为α,β,结合图像可得α11.C [∵x>0时f(x)单调且为偶函数,
∴|2x|=||,即2x(x+4)=±(x+1).
∴2x2+9x+1=0或2x2+7x-1=0.
∴共有四根.
∵x1+x2=-,x3+x4=-,
∴所有x之和为-+(-)=-8.]
12.B [因为温度y关于时间t的 ( http: / / www.21cnjy.com )图像是先凸后平行直线,即5分钟前每当t增加一个单位增量Δt,则y随相应的增量Δy越来越小,而5分钟后y关于t的增量保持为0.故选B.]【出处:21教育名师】
13.(1,+∞)
解析 由f(x)+x-a=0,
得f(x)=a-x,
令y=f(x),y=a-x,如图,
当a>1时,y=f(x)与y=a-x有且只有一个交点,
∴a>1.
14.300 m3
解析 设长为x m,则宽为(20-x)m,仓库的容积为V,
则V=x(20-x)·3=-3x2+60x,0由二次函数的图像知,顶点的纵坐标为V的最大值.
∴x=10时,V最大=300(m3).
15.(0,1)
解析 函数f(x)=的图像如图所示,
该函数的图像与直线y=m有三个交点时m∈(0,1),此时函数g(x)=f(x)-m有3个零点.
16.[-1,1]
解析 分别作出两个函数的图像,通过 ( http: / / www.21cnjy.com )图像的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图像如图所示,由图像可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件为b∈[-1,1].21cnjy.com
17.解 令f(x)=4x3+x-15,
∵y=4x3和y=x在[1,2]上都为增函数.
∴f(x)=4x3+x-15在[1,2]上为增函数,
∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0,
∴f(x)=4x3+x-15在[1,2]上存在一个零点,
∴方程4x3+x-15=0在[1,2]内有一个实数解.
18.解 (1)∵f(x)=+m是奇函数,
∴f(-x)=-f(x),
∴+m=--m.
∴+m=-m,
∴+2m=0.
∴-2+2m=0,∴m=1.
(2)作出直线y=k与函数y=|3x-1|的图像,如图.
①当k<0时,直线y=k与函数y=|3x-1|的图像无交点,即方程无解;
②当k=0或k≥1时,直线y=k与函数y=|3x-1|的图像有唯一的交点,所以方程有一解;
③当019.解 设甲买n本书,则乙买(60-n)本(不妨设甲买的书少于或等于乙买的书),则n≤30,n∈N+.  21*cnjy*com
①当1≤n≤11且n∈N+时,49≤60-n≤59,
出版公司赚的钱数f(n)=12n+10(60-n)-5×60=2n+300;
②当12≤n≤24且n∈N+时,36≤60-n≤48,
出版公司赚的钱数
f(n)=12n+11(60-n)-5×60=n+360;
③当25≤n≤30且n∈N+时,30≤60-n≤35,
出版公司赚的钱数f(n)=11×60-5×60=360.
∴f(n)=
∴当1≤n≤11时,302≤f(n)≤322;
当12≤n≤24时,372≤f(n)≤384;
当25≤n≤30时,f(n)=360.
故出版公司最少能赚302元,最多能赚384元.
20.解 若实数a满足条件,
则只需f(-1)f(3)≤0即可.
f(-1)f(3)=(1-3a+2+a-1)(9+9a-6+a-1)
=4(1-a)(5a+1)≤0,
所以a≤-或a≥1.
检验:(1)当f(-1)=0时a=1,
所以f(x)=x2+x.
令f(x)=0,即x2+x=0,
得x=0或x=-1.
方程在[-1,3]上有两根,不合题意,故a≠1.
(2)当f(3)=0时a=-,
此时f(x)=x2-x-.
令f(x)=0,即x2-x-=0,
解得,x=-或x=3.
方程在[-1,3]上有两根,
不合题意,故a≠-.
综上所述,a∈(-∞,-)∪(1,+∞).
21.解 当a=0时,函数为f(x)=2x-3,其零点x=不在区间[-1,1]上.
当a≠0时,函数f(x)在区间[-1,1]分为两种情况:
①函数在区间[-1,1]上只有一个零点,此时:
或,
解得1≤a≤5或a=.
②函数在区间[-1,1]上有两个零点,此时
,即.
解得a≥5或a<.
综上所述,如果函数在区间[-1,1]上有零点,那么实数a的取值范围为(-∞,]∪[1,+∞).
22.解 (1)依题意,得y=
其中0(2)∵0由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m立方米.
将和分别代入②,

③-④,得n=6.
代入17=9+n(4-m)+a,
得a=6m-16.
又三月份用水量为2.5立方米,
若m<2.5,将代入②,得a=6m-13,
这与a=6m-16矛盾.
∴m≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.
将代入①,得11=9+a,
由解得
∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m=3,n=6,a=2.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第四章 函数应用
§1 函数与方程
1.1 利用函数性质判定方程解的存在
课时目标 1.能够结合二次函数的图像判断一元二次方程根的存在性及根的个数.2.理解函数的零点与方程根的关系.3.掌握函数零点的存在性的判定方法.
1.我们把函数y=f(x)的图像与横轴的交点的__________称为这个函数的零点.
2.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴的交点的横坐标.www-2-1-cnjy-com
3.方程f(x)=0有实数根
函数y=f(x)的图像与x轴有________
函数y=f(x)有________.
4.函数零点的存在性的判定方法
如果函数y=f(x)在闭区间[a,b]上 ( http: / / www.21cnjy.com )的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)____0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解.2-1-c-n-j-y
一、选择题
1.二次函数y=ax2+bx+c中,ac<0,则函数的零点个数是(  )
A.0个 B.1个
C.2个 D.无法确定
2.若函数y=f(x)在区间[a,b]上的图像为一条连续不断的曲线,则下列说法正确的是(  )
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0
C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0
D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0
3.若函数f(x)=ax+b(a≠0)有一个零点为2,那么函数g(x)=bx2-ax的零点是(  )
A.0,- B.0,
C.0,2 D.2,-
4.函数f(x)=ex+x-2的零点所在的一个区间是(  )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
5.函数零点的个数为(  )
A.0 B.1 C.2 D.3
6.已知函数y=ax3+bx2+cx+d的图像如图所示,则实数b的取值范围是(  )
A.(-∞,0)
B.(0,1)
C.(1,2)
D.(2,+∞)
题 号 1 2 3 4 5 6
答 案
二、填空题
7.已知函数f(x)是定义域为R的奇函数, ( http: / / www.21cnjy.com )-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有____个零点,这几个零点的和等于______.21世纪教育网版权所有
8.函数f(x)=ln x-x+2的零点个数为________.
9.根据表格中的数据,可以判定方程ex-x ( http: / / www.21cnjy.com )-2=0的一个实根所在的区间为(k,k+1)(k∈N),则k的值为____________________________________________________________.
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4 5
三、解答题
10.证明:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.
11.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围.21教育网
能力提升
12.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则方程f(x)=x的 解的个数是(  )21cnjy.com
A.1 B.2
C.3 D.4
13.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,求k的取值范围.21·cn·jy·com
1.方程的根与方程所对应函数的零点的关系
(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.
(2)根据函数零点定义可知 ( http: / / www.21cnjy.com ),函数f(x)的零点就是方程f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.
(3)函数F(x)=f(x)-g(x) ( http: / / www.21cnjy.com )的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与y=g(x)的图像交点的横坐标.www.21-cn-jy.com
2.并不是所有的函数都有零点,如函数y=.
3.对于任意的一个函数,即使它的图 ( http: / / www.21cnjy.com )像是连续不断的,当它通过零点时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然当它通过零点时函数值没有变号.
第四章 函数应用
§1 函数与方程
1.1 利用函数性质判定方程解的存在
知识梳理
1.横坐标 3.交点 零点 4.<
作业设计
1.C [方程ax2+bx+c=0中,
∵ac<0,∴a≠0,
∴Δ=b2-4ac>0,
即方程ax2+bx+c=0有2个不同实数根,
则对应函数的零点个数为2个.]
2.C [对于选项A,可能存在根;
对于选项B,必存在但不一定唯一;
选项D显然不成立.]
3.A [∵a≠0,2a+b=0,
∴b≠0,=-.
令bx2-ax=0,得x=0或x==-.]
4.C [∵f(x)=ex+x-2,
f(0)=e0-2=-1<0,
f(1)=e1+1-2=e-1>0,
∴f(0)·f(1)<0,
∴f(x)在区间(0,1)上存在零点.]
5.C [x≤0时,令x2+2x-3=0,解得x=-3.
x>0时,f(x)=ln x-2在(0,+∞)上递增,
f(1)=-2<0,f(e3)=1>0,
∵f(1)f(e3)<0
∴f(x)在(0,+∞)上有且只有一个零点.
总之,f(x)在R上有2个零点.]
6.A [设f(x)=ax3+bx ( http: / / www.21cnjy.com )2+cx+d,则由f(0)=0可得d=0,f(x)=x(ax2+bx+c)=ax(x-1)(x-2) b=-3a,又由x∈(0,1)时,f(x)>0,可得a>0,∴b<0.]
7.3 0
解析 ∵f(x)是R上的奇函数,
∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,
由奇函数的对称性可知,f(x)在(-∞,0) ( http: / / www.21cnjy.com )上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,2·1·c·n·j·y
其和为-2+0+2=0.
8.2
解析 该函数零点的个数就是函数y=ln x与y=x-2图像的交点个数.在同一坐标系中作出y=ln x与y=x-2的图像如下图:【来源:21·世纪·教育·网】
由图像可知,两个函数图像有2个交点,
即函数f(x)=ln x-x+2有2个零点.
9.1
解析 设f(x)=e2-( ( http: / / www.21cnjy.com )x+2),由题意知f(-1)<0,f(0)<0,f(1)<0,f(2)>0,所以方程的一个实根在区间(1,2)内,即k=1.21·世纪*教育网
10.证明 设f(x)=x4-4x-2,其图像是连续曲线.
因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0.
所以在(-1,0),(0,2)内都有实数解.
从而证明该方程在给定的区间内至少有两个实数解.
11.解 令f(x)=mx2+2(m+3)x+2m+14.
依题意得或,
即或,解得-12.C [由已知得
∴f(x)=
当x≤0时,方程为x2+4x+2=x,
即x2+3x+2=0,
∴x=-1或x=-2;
当x>0时,方程为x=2,
∴方程f(x)=x有3个解.]
13.解 设f(x)=x2+(k-2)x+2k-1.
∵方程f(x)=0的两根中,一根在(0,1)内,一根在(1,2)内,
∴,即,
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.2 利用二分法求方程的近似解
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.www-2-1-cnjy-com
1.二分法的概念
每次取区间的中点,将区间__ ( http: / / www.21cnjy.com )________,再经比较,按需要留下其中一个小区间的方法称为二分法.由函数的零点与相应方程根的关系,可用二分法来求_________________ _______________________________________________________.
2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε)
(1)确定区间[a,b],使____________.
(2)求区间(a,b)的中点,x1=__________.
(3)计算f(x1).
①若f(x1)=0,则________________;
②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));
③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)).
(4)继续实施上述步骤,直到区间[an ( http: / / www.21cnjy.com ),bn],函数的零点总位于区间[an,bn]上,当an和bn按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点满足给定的精确度.
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是(  )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
2.下列图像与x轴均有交点,其中不能用二分法求函数零点的是(  )
3.对于函数f(x)在定义域内用二分法 ( http: / / www.21cnjy.com )的求解过程如下:f(2 007)<0,f(2 008)<0,f(2 009)>0,则下列叙述正确的是(  )21·世纪*教育网
A.函数f(x)在(2 007,2 008)内不存在零点
B.函数f(x)在(2 008,2 009)内不存在零点
C.函数f(x)在(2 008,2 009)内存在零点,并且仅有一个
D.函数f(x)在(2 007,2 008)内可能存在零点
4.设f(x)=3x+3x-8,用二分法 ( http: / / www.21cnjy.com )求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(  )【来源:21cnj*y.co*m】
A.(1,1.25) B.(1.25,1.5)【出处:21教育名师】
C.(1.5,2) D.不能确定
5.利用计算器,列出自变量和函数值的对应关系如下表:
x 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 …
y=2x 1.149 1.516 2.0 2.639 3.482 4.595 6.063 8.0 10.556 …
y=x2 0.04 0.36 1.0 1.96 3.24 4.84 6.76 9.0 11.56 …
那么方程2x=x2的一个根位于下列哪个区间内(  )
A.(0.6,1.0) B.(1.4,1.8)
C.(1.8,2.2) D.(2.6,3.0)
6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>021世纪教育网版权所有
C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>021·cn·jy·com
题 号 1 2 3 4 5 6
答 案
二、填空题
7.若函数f(x)的图像是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)2-1-c-n-j-y
①(-∞,1];②[1,2];③[2,3];④[3,4];⑤[4,5];
⑥[5,6];⑦[6,+∞).
x 1 2 3 4 5 6
f(x) 136.123 15.542 -3.930 10.678 -50.667 -305.678
8.用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是________.【来源:21·世纪·教育·网】
9.在用二分法求方程f(x)=0在[0,1] ( http: / / www.21cnjy.com )上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为____________(精确度为0.1).
三、解答题
10.确定函数f(x)=x+x-4的零点所在的区间.
11.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
能力提升
12.下列是关于函数y=f(x),x∈[a,b]的说法:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为(  )
A.0 B.1 C.3 D.4
13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?21cnjy.com
1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.
2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为.
3.求函数零点的近似值时,所要求的精 ( http: / / www.21cnjy.com )确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.www.21-cn-jy.com
1.2 利用二分法求方程的近似解
知识梳理
1.一分为二 方程的近似解 2.(1)f(a)·f(b)<0 (2)
(3)①x1就是函数的零点
作业设计
1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
2.A [由选项A中的图像可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A选项中的零点不是变号零点,不符合二分法的定义.]2·1·c·n·j·y
3.D
4.B [∵f(1)·f(1.5)<0,x1==1.25,
且f(1.25)<0,∴f(1.25)·f(1.5)<0,
则方程的根落在区间(1.25,1.5)内.]
5.C [设f(x)=2x-x2,根据 ( http: / / www.21cnjy.com )列表有f(0.2)=1.149-0.04>0,f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.  21*cnjy*com
因此方程的一个根在区间(1.8,2.2)内.]
6.B [∵f(x)=2x-,f(x)由两部分组成,2x在(1,+∞)上单调递增,-在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1又∵x2>x0,∴f(x2)>f(x0)=0.]
7.③④⑤
8.[2,2.5)
解析 令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,
f(2.5)=15.625-10=5.625>0.
∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).
9.0.75或0.687 5
解析 因为|0.75-0.687 5|=0.062 5<0.1,
所以0.75或0.687 5都可作为方程的近似解.
10.解 (答案不唯一)
设y1=x,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图像,如图.
由图知,y1与y2在区间(0,1)内有一个交点,
当x=4时,y1=-2,y2=0,f(4)<0,
当x=8时,y1=-3,y2=-4,f(8)=1>0,
∴在(4,8)内两曲线又有一个交点.
故函数f(x)的两零点所在的区间为(0,1),(4,8).
11.证明 设函数f(x)=2x+3x-6,
∵f(1)=-1<0,f(2)=4>0,
又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,
则方程6-3x=2x在区间[1,2]内有唯一一个实数解.
设该解为x0,则x0∈[1,2],
取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,
∴x0∈(1,1.5),
取x2=1.25,f(1.25)≈0.128>0,
f(1)·f(1.25)<0,∴x0∈(1,1.25),
取x3=1.125,f(1.125)≈-0.444<0,
f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),
取x4=1.187 5,f(1.187 5)≈-0.16<0,
f(1.187 5)·f(1.25)<0,
∴x0∈(1.187 5,1.25).
∵|1.25-1.187 5|=0.062 5<0.1,
∴1.187 5可作为这个方程的实数解.
12.A [∵①中x0∈[a,b] ( http: / / www.21cnjy.com )且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]
13.解 第一次各13枚称重,选出较轻一端的13枚,继续称;第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;21教育网
第三次两端各3枚,选出较轻的3枚继续称;
第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.
∴最多称四次.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
习题课
课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.
1.函数f(x)在区间(0,2)内有零点,则(  )
A.f(0)>0,f(2)<0
B.f(0)·f(2)<0
C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0
D.以上说法都不正确
2.函数f(x)=x2+2x+b的图像与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是(  )【来源:21·世纪·教育·网】
A.0 B.1
C.2 D.1或2
3.设函数f(x)=log3-a在区间(1,2)内有零点,则实数a的取值范围是(  )
A.(-1,-log32) B.(0,log32)
C.(log32,1) D.(1,log34)  21*cnjy*com
4.方程2x-x-2=0在实数范围内的解的个数是________.
5.函数y=()x与函数y=lg x的图像的交点的横坐标是________.(精确到0.1)
6.方程4x2-6x-1=0位于区间(-1,2)内的解有____________个.
一、选择题
1.已知某函数f(x)的图像如图所示,则函数f(x)有零点的区间大致是(  )
A.(0,0.5)
B.(0.5,1)
C.(1,1.5)
D.(1.5,2)
2.函数f(x)=x5-x-1的一个零点所在的区间可能是(  )
A.[0,1] B.[1,2]
C.[2,3] D.[3,4]
3.若x0是方程lg x+x=2的解,则x0属于区间(  )
A.(0,1) B.(1,1.25)
C.(1.25,1.75) D.(1.75,2)
4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是(  )
A.[-2,1] B.[-1,0]
C.[0,1] D.[1,2]
5.已知函数f(x)=(x-a)(x-b ( http: / / www.21cnjy.com ))+2(aA.a<α<βC.α题 号 1 2 3 4 5
答 案
二、填空题
6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.www.21-cn-jy.com
7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.
8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为______________.21·世纪*教育网
9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.21*cnjy*com
三、解答题
10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:
f(1)=-2 f(1.5)=0.625
f(1.25)≈-0.984 f(1.375)≈-0.260
f(1.437 5)≈0.162 f(1.406 25)≈-0.054
求方程x3+x2-2x-2=0的一个近似根(精确度0.1).
11.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,
(1)有两个负根;
(2)有两个实根,且一根比2大,另一根比2小;
(3)有两个实根,且都比1大.
能力提升
12.已知函数f(x)=x|x-4|.
(1)画出函数f(x)=x|x-4|的图像;
(2)求函数f(x)在区间[1,5]上的最大值和最小值;
(3)当实数a为何值时,方程f(x)=a有三个解?
13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.
1.函数与方程存在着内在的联系, ( http: / / www.21cnjy.com )如函数y=f(x)的图像与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图像交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构造方程来研究函数的相关问题.利用函数与21cnjy.com
方程的相互转化去解决问题,这是一种重要的数学思想方法.
2.对于二次方程f(x)=ax2 ( http: / / www.21cnjy.com )+bx+c=0根的问题,从函数角度解决有时比较简洁.一般地,这类问题可从四个方面考虑:①开口方向;②判别式;③对称轴x=-与区间端点的关系;④区间端点函数值的正负.21·cn·jy·com
习题课
双基演练
1.D [函数y=f(x ( http: / / www.21cnjy.com ))在区间(a,b)内存在零点,我们并不一定能找到x1,x2∈(a,b),满足f(x1)·f(x2)<0,故A、B、C都是错误的,正确的为D.]2·1·c·n·j·y
2.D [当f(x)的图像和x ( http: / / www.21cnjy.com )轴相切与y轴相交时,函数f(x)的零点数为1,当f(x)的图像与y轴交于原点与x轴的另一交点在x轴负半轴上时,函数f(x)有2个零点.]
3.C [f(x)=log3(1+)-a在(1,2)上是减函数,由题设有f(1)>0,f(2)<0,解得a∈(log32,1).]www-2-1-cnjy-com
4.2
解析 作出函数y=2x及y=x+2的图像,它们有两个不同的交点,因此原方程有两个不同的根.
5.1.9(答案不唯一)
解析 令f(x)=()x-lg x,则f(1)=>0,f(3)=-lg 3<0,∴f(x)=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.【来源:21cnj*y.co*m】
6.2
解析 设f(x)=4x2-6x-1,由f(-1)>0,f(2)>0,且f(0)<0,知方程4x2-6x-1=0在
(-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.
作业设计
1.B
2.B [因为f(0)<0,f(1)<0,f(2)>0,
所以存在一个零点x∈[1,2].]
3.D [构造函数f(x)=lg x+x-2,由f(1.75)=f()=lg-<0,f(2)=lg 2>0,
知x0属于区间(1.75,2).]
4.A [由于f(-2)=-3<0,f(1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]【出处:21教育名师】
5.A [函数g(x)=(x-a)(x-b)的两个零点是a,b.
由于y=f(x)的图像可看作是由y=g(x)的图像向上平移2个单位而得到的,所以a<α<β6.7
解析 区间(2,3)的长度为1,当7次二分后区间长度为
=<=0.01.
7.0
解析 不妨设它的两个正零点分别为x1,x2.
由f(-x)=f(x)可知它的两个负零点分别是-x1,-x2,
于是x1+x2-x1-x2=0.
8.(-1,0)
解析 设f(x)=x2-2x+p+1,根据题意得f(0)=p+1>0,
且f(1)=p<0,f(2)=p+1>0,解得-19.a<0
解析 对ax2+2x+1=0,当a=0时,x=-,不符题意;
当a≠0,Δ=4-4a=0时,得x=-1(舍去).
当a≠0时,由Δ=4-4a>0,得a<1,
又当x=0时,f(0)=1,即f(x)的图像过(0,1)点,
f(x)图像的对称轴方程为x=-=-,
当->0,即a<0时,
方程f(x)=0有一正根(结合f(x)的图像);
当-<0,即a>0时,由f(x)的图像知f(x)=0有两负根,
不符题意.故a<0.
10.解 ∵f(1.375)·f(1.437 5)<0,
且|1.437 5-1.375|=0.062 5<0.1,
方程x3+x2-2x-2=0的一个近似根可取为区间(1.375,1.437 5)中任意一个值,通常我们取区间端点值,2-1-c-n-j-y
比如1.437 5.
11.解 (1)方法一 (方程思想)
设方程的两个根为x1,x2,
则有两个负根的条件是解得-1方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原问题转化为函数f(x)与x轴的两个交点均在y轴左侧,结合函数的图像,有21教育网
解得-1(2)方法一 (方程思想)
设方程的两个根为x1,x2,则令y ( http: / / www.21cnjy.com )1=x1-2>0,y2=x2-2<0,问题转化为求方程(y+2)2+2(y+2)+m+1=0,即方程y2+6y+m+9=0有两个异号实根的条件,故有y1y2=m+9<0,解得m<-9.【版权所有:21教育】
方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原 ( http: / / www.21cnjy.com )问题转化为函数f(x)与x轴的两个交点分别在2的两侧,结合函数的图像,有f(2)=m+9<0,解得m<-9.21教育名师原创作品
(3)由题意知,(方程思想),
或(函数思想),
因为两方程组无解,故解集为空集.
12.解 (1)f(x)=x|x-4|=
图像如右图所示.
(2)当x∈[1,5]时,f(x)≥0且当x=4时f(x)=0,故f(x)min=0;
又f(2)=4,f(5)=5,故f(x)max=5.
(3)由图像可知,当0方程f(x)=a有三个解.
13.解 ①当a=0时,方程即为-2x+1=0,只有一根,不符合题意.
②当a>0时,设f(x)=ax2-2x+1,
∵方程的根分别在区间(0,1),(1,2)上,
∴,即,解得③当a<0时,设方程的两根为x1,x2,
则x1x2=<0,x1,x2一正一负不符合题意.
综上,a的取值范围为21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
§2 实际问题的函数建模
课时目标 1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法.3.了解应用实例的三个方面和数学建模的步骤.21·cn·jy·com
1.函数模型的应用实例主要包括三个方面:
(1)利用给定的函数模型解决实际问题;
(2)建立确定性的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.
2.面临实际问题,自己建立函数模型的步骤:
(1)收集数据;
(2)描点;
(3)选择函数模型;
(4)求函数模型;
(5)检验;
(6)用函数模型解决实际问题.
一、选择题
1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:
x(h) 0 1 2 3
细菌数 300 600 1 200 2 400
据此表可推测实验开始前2 h的细菌数为(  )
A.75 B.100
C.150 D.200
2.某公司市场营销人员的个人月 ( http: / / www.21cnjy.com )收入与其每月的销售量成一次函数关系,其图像如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(  )
A.310元 B.300元
C.290元 D.280元
3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是(  )21cnjy.com
A.减少7.84% B.增加7.84%
C.减少9.5% D.不增不减
4.某工厂6年来生产某种产品的情况是:前 ( http: / / www.21cnjy.com )三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图像正确的是(  )www.21-cn-jy.com
5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )【来源:21·世纪·教育·网】
A.cm2 B.4 cm2
C.3 cm2 D.2 cm2
6.某厂有许多形状为直角梯形的铁 ( http: / / www.21cnjy.com )皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为(  )www-2-1-cnjy-com
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
题 号 1 2 3 4 5 6
答 案
二、填空题
7.某不法商人将彩电先按原 ( http: / / www.21cnjy.com )价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.
8.麋鹿是国家一级保护动物,位于江苏 ( http: / / www.21cnjy.com )省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=alog2(x+1)给出,则2000年年底它们的数量约为________头.2-1-c-n-j-y
9.某种病毒经30分钟繁殖为 ( http: / / www.21cnjy.com )原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.  21*cnjy*com
三、解答题
10.东方旅社有100张普通客床,若每床每 ( http: / / www.21cnjy.com )夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?
11.芦荟是一种经济价值很高 ( http: / / www.21cnjy.com )的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10 kg)与上市时间t(单位:天)的数据情况如下表:【来源:21cnj*y.co*m】
t 50 110 250
Q 150 108 150
(1)根据上表数据,从下列函数 ( http: / / www.21cnjy.com )中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt;2·1·c·n·j·y
(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.
能力提升
12.某工厂生产一种电脑元件,每月的生产数据如表:
月份 1 2 3
产量(千件) 50 52 53.9
为估计以后每月对该电脑元件的产量,以 ( http: / / www.21cnjy.com )这三个月的产量为依据,用函数y=ax+b或y=ax+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.21教育网
13.一片森林原来的面积为a,计划 ( http: / / www.21cnjy.com )每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
1.函数模型的应用实例主要包括三个方面:
(1)利用给定的函数模型解决实际问题;
(2)建立确定性的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.
2.函数拟合与预测的一般步骤:
(1)能够根据原始数据、表格,绘出散点图.
(2)通过考察散点图,画出“最贴近”的直线 ( http: / / www.21cnjy.com )或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.
(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.
(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.
§2 实际问题的函数建模
作业设计
1.A [由表中数据观察可得细菌数y与时间x的关系式为y=300·2x(x∈Z).当x=-2时,
y=300×2-2==75.]
2.B [由题意可知,收入y是销售量x的一次函数,设y=ax+b,将(1,800),(2,1 300)代入得a=500,b=300.21·世纪*教育网
当销售量为x=0时,y=300.]
3.A [设某商品价格为a,依题意 ( http: / / www.21cnjy.com )得:a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,所以四年后的价格与原来价格比较(0.921 6-1)a=-0.078 4a,即减少7.84%.]
4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,【出处:21教育名师】
故选A.]
5.D [设一段长为x cm,则另一段长为(12-x)cm.
∴S=()2+(4-)2=(x-6)2+2≥2.]
6.A [由三角形相似得=,得x=(24-y),
∴S=xy=-(y-12)2+180.
∴当y=12时,S有最大值,此时x=15.]
7.2 250 [设每台彩电的原价为x元,则x(1+40%)×0.8-x=270,解得x=2 250(元).]
8.400
解析 由题意,x=1时y=100,代入求得a=100,2000年年底时,
x=15,代入得y=400.
9.2ln 2 1 024
解析 当t=0.5时,y=2,
∴2=,
∴k=2ln 2,
∴y=e2tln 2,当t=5时,
∴y=e10ln 2=210=1 024.
10.解 设每床每夜租金为10+2n(n∈N),则租出的床位为
100-10n(n∈N且n<10)
租金f(n)=(10+2n)(100-10n)
=20[-(n-)2+],
其中n∈N且n<10.
所以,当n=2或n=3时,租金最多,
若n=2,则租出床位100-20=80(张);
若n=3,则租出床位100-30=70(张);
综合考虑,n应当取3,即每床每夜租金选择
10+2×3=16(元).
11.解 (1)由所提供的数据可知,刻 ( http: / / www.21cnjy.com )画芦荟种植成本Q与上市时间t的变化关系的函数不可能是常值函数,若用函数Q=at+b,Q=a·bt,Q=alogbt中的任意一个来反映时都应有a≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,可得:21世纪教育网版权所有
解得a=,b=-,c=.
所以,刻画芦荟种植成本Q与上市时间t的变化关系的函数为
Q=t2-t+.
(2)当t=-=150(天)时,芦荟种植成本最低为
Q=×1502-×150+=100(元/10 kg).
12.解 将(1,50)、(2,52)分别代入两解析式得:
或(a>0)
解得(两方程组的解相同).
∴两函数分别为y=2x+48或y=2x+48.
当x=3时,对于y=2x+48有y=54;
当x=3时,对于y=2x+48有y=56.
由于56与53.9的误差较大,
∴选y=ax+b较好.
13.解 (1)设每年砍伐面积的百分比为x(0a(1-x)10=a,即(1-x)10=,解得x=1-.
(2)设经过m年剩余面积为原来的,则
a(1-x)m=a,即=,=,解得m=5,
故到今年为止,已砍伐了5年.
(3)设从今年开始,以后砍了n年,
则n年后剩余面积为a(1-x)n.
令a(1-x)n≥a,即(1-x)n≥,
≥,≤,解得n≤15.
故今后最多还能砍伐15年.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
习题课
课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法.
1.在我国大西北,某地区荒漠化土地面积每年平 ( http: / / www.21cnjy.com )均比上年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图像大致为(  )
2.能使不等式log2xA.(0,+∞) B.(2,+∞)
C.(-∞,2) D.(0,2)∪(4,+∞)
3.四人赛跑,假设其跑过的路程fi(x ( http: / / www.21cnjy.com ))(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是(  )
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=log2x D.f4(x)=2x
4.某城市客运公司确定客票价格的方法是:如果 ( http: / / www.21cnjy.com )行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________.【来源:21cnj*y.co*m】
5.如图所示,要在一个边长 ( http: / / www.21cnjy.com )为150 m的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为______m(精确到0.01 m).
一、选择题
1.下面对函数f(x)=x与g(x)=()x在区间(0,+∞)上的衰减情况说法正确的是(  )
A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快
B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢
C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢
D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快
2.下列函数中随x的增大而增长速度最快的是(  )
A.y=ex B.y=100ln x
C.y=x100 D.y=100·2x
3.一等腰三角形的周长是20,底边y是关于腰长x的函数,它的解析式为(  )
A.y=20-2x(x≤10) B.y=20-2x(x<10)
C.y=20-2x(5≤x≤10) D.y=20-2x(54.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:  21*cnjy*com
型号 小包装 大包装
重量 100克 300克
包装费 0.5元 0.7元
销售价格 3.00元 8.4元
则下列说法中正确的是(  )
①买小包装实惠 ②买大包装实惠 ③卖3小包比卖1大包盈利多 ④卖1大包比卖3小包盈利多
A.①③ B.①④ C.②③ D.②④
5.某商店出售A、B两种价 ( http: / / www.21cnjy.com )格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是(  )www.21-cn-jy.com
A.多赚约6元 B.少赚约6元
C.多赚约2元 D.盈利相同
6.某地区植被破坏、土地沙化越来越严重,最近 ( http: / / www.21cnjy.com )三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是(  )21教育名师原创作品
A.y=0.2x B.y=(x2+2x)21*cnjy*com
C.y= D.y=0.2+log16x
题 号 1 2 3 4 5 6
答 案
二、填空题
7.某种电热水器的水箱盛满水是200升,加 ( http: / / www.21cnjy.com )热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供________人洗澡.
8.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是________.21cnjy.com
9.已知甲、乙两地相距150 km,某人开 ( http: / / www.21cnjy.com )汽车以60 km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为________.
三、解答题
10.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正常数.
(1)说明该函数是增函数还是减函数;
(2)把t表示成原子数N的函数;
(3)求当N=时,t的值.
11.我县某企业生产A,B两种产品,根据市 ( http: / / www.21cnjy.com )场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元).
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系;
(2)该企业已筹集到10万元资金,并 ( http: / / www.21cnjy.com )全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).
能力提升
12.某乡镇现在人均一年占有粮食36 ( http: / / www.21cnjy.com )0 kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y kg粮食,求出函数y关于x的解析式.21·cn·jy·com
13.如图,有一块矩形空地 ( http: / / www.21cnjy.com ),要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.2·1·c·n·j·y
(1)写出y关于x的函数关系式,并指出这个函数的定义域.
(2)当AE为何值时,绿地面积y最大?
解决实际问题的解题过程:
(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;21世纪教育网版权所有
(2)建立函数模型:将变量y表示为x的函数,在中学数学中,我们建立的函数模型一般都是基本初等函数;
(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点,正确选择函数知识求得函数模
型的解,并还原为实际问题的解.
这些步骤用框图表示:
习题课
双基演练
1.D [设某地区的原有荒漠化土地面积为a,则x年后的面积为a(1+10.4%)x,由题意y==1.104x,故选D.]21教育网
2.D [由题意知x的范围为x>0,由 ( http: / / www.21cnjy.com )y=log2x,y=x2,y=2x的图像可知,当x>0时,log2x3.D [由于指数函数的增长特点是越来越大,故选D.]
4.y=
5.24.50
解析 设道路宽为x,则×100%=30%,
解得x1≈24.50,x2≈275.50(舍去).
作业设计
1.C
2.A [对于指数函数,当底数大于1时,函数值随x的增大而增大的速度快,又∵e>2,故选A.]
3.D [∵20=y+2x,∴y=20-2x,
又y=20-2x>0且2x>y=20-2x,
∴54.D [买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元).而2.3>2.1,卖1大包盈利多,故选D.]
5.B [设A、B两种商品的原价为a、b,
则a(1+20%)2=b(1-20%)2=23 a=,b=,a+b-46≈6(元).]
6.C [将(1,0.2),(2,0.4) ( http: / / www.21cnjy.com ),(3,0.76)与x=1,2,3时,选项A、B、C、D中得到的y值做比较,y=的y值比较接近.]【来源:21·世纪·教育·网】
7.4
解析 设最多用t分钟,则水箱内水量y=200+2t2-34t,当t=时y有最小值,此时共放水34×=289(升),可供4人洗澡.2-1-c-n-j-y
8.y=
解析 设每经过1年,剩留量为原来的a倍,则y=ax,
且0.957 6=,从而a=,
因此y=.
9.s=
解析 当0≤t≤2.5时,s=60t,
当2.5当3.5≤t≤6.5时,s=150-50(t-3.5)=325-50t,
综上所述,s=
10.解 (1)由于N0>0,λ>0, ( http: / / www.21cnjy.com )函数N=N0e-λt是属于指数函数y=e-x类型的,所以它是减函数,即原子数N的值随时间t的增大而减少.【出处:21教育名师】
(2)将N=N0e-λt写成e-λ ( http: / / www.21cnjy.com )t=,根据对数的定义有-λt=ln,所以t=-(ln N-ln N0)=(ln N0-ln N).【版权所有:21教育】
(3)把N=代入t=(ln N0-ln N),
得t=(ln N0-ln)=ln 2.
11.解 (1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,www-2-1-cnjy-com
由图知f(1)=,∴k1=,又g(4)=,∴k2=.
从而f(x)=x(x≥0),g(x)=(x≥0).
(2)设A产品投入x万元,则B产品投入(10-x)万元,
设企业的利润为y万元,
y=f(x)+g(10-x)=+(0≤x≤10),
令=t,
则y=+t=-(t-)2+(0≤t≤),
当t=,ymax≈4,此时x=10-=3.75,10-x=6.25.
所以投入A产品3.75万元,投入B产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.
12.解 设该乡镇现在人口量为M,则该乡镇现在一年的粮食总产量为360M,
经过1年后,该乡镇粮食总产量为360M( ( http: / / www.21cnjy.com )1+4%),人口量为M(1+1.2%),则人均占有粮食为;经过2年后,人均占有粮食为;…;经过x年后,人均占有粮食为y=,即所求函数解析式为y=360()x.
13.解 (1)S△AEH=S△CFG=x2,
S△BEF=S△DGH=(a-x)(2-x).
∴y=S矩形ABCD-2S△AEH-2S△BEF=2a-x2-(a-x)(2-x)
=-2x2+(a+2)x.
由,得0∴y=-2x2+(a+2)x,定义域为(0,2].
(2)当<2,即a<6时,则x=时,y取最大值;
当≥2,即a≥6时,y=-2x2+(a+2)x,
在(0,2]上是增函数,则x=2时,ymax=2a-4.
综上所述:当a<6,AE=时,绿地面积取最大值;当a≥6,AE=2时,绿地面积取最大值2a-4.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网