湘教版七年级数学上册期末综合复习 (含解析)

文档属性

名称 湘教版七年级数学上册期末综合复习 (含解析)
格式 docx
文件大小 332.1KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2023-10-13 18:26:16

图片预览

文档简介

湘教版七年级数学上册期末综合复习
一、单选题(共 10 小题)
1、把根绳子对折成一条线段,在线段取一点,使,从处把绳子剪断,若剪断后的三段绳子中最长的一段为,则绳子的原长为( )
A. B. C.或 D.或
2、如图线段,点在射线上从点开始,以每秒的速度沿着射线的方向匀速运动,则时,运动时间为( )
A.秒 B.3秒 C.秒或秒 D.3秒或6秒
3、对于等式:,下列说法正确的是( )
A.不是方程 B.是方程,其解只有2
C.是方程,其解只有0 D.是方程,其解有0和2
4、有理数a、b、c在数轴上位置如图,则的值为( ).
A. B. C.0 D.
5、如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从左向右移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有(  )
A.3个 B.4个 C.5个 D.6个
6、实数,,在数轴上对应点的位置如图所示,如果,下列结论中错误的是( )
A. B. C. D.
7、己知点M是线段AB上一点,若,点N是直线AB上的一动点,且,则的( )
A. B. C.1或 D.或2
8、若,则称是以10为底的对数.记作:.例如:,则;,则.对数运算满足:当,时,,例如:,则的值为( )
A.5 B.2 C.1 D.0
9、已知a,b两数在数轴上的位置如图所示,则代数式的结果是( )
A. B. C.3 D.
10、如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是(  )
A.0 B.2 C.4 D.6
二、填空题(共 8 小题)
1、已知关于x的方程的解为,则a的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为______.
2、使用课本上的科学计算器,进行如下按键:
按键结束后输出的结果为______.
3、已知数轴上A、B两点表示的数互为相反数,并且两点间的距离是18,在A、B之间有一点P,若P到A的距离是P到B的距离的,则P点表示的数是___________.
4、数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A、B表示的数分别为﹣2、1,点C为数轴上一动点.
(1)当点C在线段AB上,点A是B、C两点的“友好点”时,点C表示的数为_______;
(2)若点C从点B出发,沿BA方向运动到点M,在运动过程中有4个时刻使A、B、C三点满足“友好关系”,设点M表示的数为m,则m的范围是_______.
5、将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.
6、若实数,满足,,则________.
7、甲、乙两站的路程为360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米.
(1)两列火车同时开出,相向而行,经过_____小时相遇;
(2)快车先开25分钟,两车相向而行,慢车行驶了______小时两车相遇;
(3)若两车同时开出,同向而行,_______小时后,两相距720千米.
8、太阳光照射到地球表面所需的时间大约是5×102s,光的速度约是3×108m/s,地球与太阳之间的距离是_________m
三、解答题(共 6 小题)
1、解方程:
2、我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.
(1)2020属于   类(填A,B或C);
(2)①从A类数中任取两个数,则它们的和属于   类(填A,B或C);
②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们都加起来,则最后的结果属于   类(填A,B或C);
(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是   (填序号).
①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于C类;④m,n属于同一类.
3、计算下式的值:,其中,,甲同学把错抄成,但他计算的结果也是正确的,你能说明其中的原因吗?
4、解关于x的方程:.
5、如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.
(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是    与    ,    与    ,    与    ;
(2)若设长方体的宽为xcm,则长方体的长为    cm,高为    cm;(用含x的式子表示)
(3)求这种长方体包装盒的体积.
6、洋洋九年级上学期的数学成绩如下表所示:
(1)计算洋洋该学期的数学平时平均成绩;
(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.
-参考答案-
一、单选题
1、C
【分析】由于题目中的对折没有明确对折点,所以要分A为对折点与B为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.
【详解】解:如图
∵,
∴2AP=<PB
①若绳子是关于A点对折,
∵2AP<PB
∴剪断后的三段绳子中最长的一段为PB=30cm,
∴绳子全长=2PB+2AP=24×2+×24=64cm;
②若绳子是关于B点对折,
∵AP<2PB
∴剪断后的三段绳子中最长的一段为2PB=24cm
∴PB=12 cm
∴AP=12×cm
∴绳子全长=2PB+2AP=12×2+4×2=32 cm;
故选:C.
【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.
2、C
【分析】根据题意可知,当PB=AB时,点P可以位于点B两侧,则通过分类讨论问题可解.
【详解】解:由已知当PB=AB时,PB=,
设点P运动时间为t秒,则AP=2t
当点P在B点左侧时
2t+=8
解得t=,
当点P在B点左侧时
2t-=8
解得t=
所以t=或t=.
故选:C.
【点睛】本题考查了一元一次方程以及分类讨论的数学思想,解答时注意根据已知的线段数量关系构造方程.
3、D
【分析】根据方程的定义及方程解的定义可判断选项的正确性.方程就是含有未知数的等式,方程的解是能使方程左右两边相等的未知数的值.
【详解】解:|x-1|+2=3符合方程的定义,是方程,
(1)当x≥1时,x-1+2=3,解得x=2;
(2)当x<1时,1-x+2=3,解得x=0.
故选:D.
【点睛】本题主要考查了方程的定义及方程解的定义,关键在于讨论x的取值情况,从而通过解方程确定方程的解.
4、A
【分析】根据数轴,确定每个数的属性,每个代数式的属性,后化简即可.
【详解】根据数轴上点的位置得:,且,
则,,,
则.
故选A.
【点睛】本题考查了数轴和有理数的大小比较与绝对值的化简,掌握获取数轴信息,熟练化简是解题的关键.
5、C
【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,由此可以得到出现报警的最多次数.
【详解】解:根据题意可知:
当点P经过任意一条线段中点时会发出报警,
∵图中共有线段AB、AC、AD、BC、BD、CD,
∵AD和BC的中点是同一个,
∴直线l上会发出警报的点P有5个.
故选:C.
【点睛】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.
6、B
【分析】根据|a|=|b|,确定原点的位置,根据实数与数轴,有理数的运算法则即可解答.
【详解】解:∵|a|=|b|,
∴原点在a,b的中间,
如下图,
由图可得:|a|<|c|,a<0,b>0,c>0,
∴A、a+c>0,此选项正确,故不符合题意;
B、a b<0,此选项错误,故此选项符合题意;
C、 b+c>0,此选项正确,故此选项不符合题意;
D、ac<0,此选项正确,故此选项不符合题意;
故选:B.
【点睛】本题考查了数轴,绝对值,有理数的乘法、加法、减法,解题的关键是确定原点的位置.
7、C
【分析】根据N在线段AB上和线段AB外分情况讨论,再结合线段关系即可解题.
【详解】当N在射线BA上时,,不合题意
当N在射线AB上时,,此时
当N在线段AB上时,
由图可知
∴,





故选:C.
【点睛】本题考查线段和差计算,解题的关键是画出图形根据图像找到线段直接的和差关系.
8、C
【分析】通过阅读自定义运算规则:,再得到 再通过提取公因式后逐步进行运算即可得到答案.
【详解】解: ,
故选C
【点睛】本题考查的是自定义运算,理解题意,弄懂自定义的运算法则是解本题的关键.
9、C
【分析】根据数轴,得到信息为b<-1<0,1<a<2,化简绝对值即可.
【详解】∵b<-1<0,1<a<2,
∴a-2<0,b+1<0,a-b>0,

=a-b+2-a+b+1
=3,
故选C.
【点睛】本题考查了数轴,有理数的大小比较,绝对值的化简,正确读取数轴信息,准确进行绝对值的化简是解题的关键.
10、B
【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.
【详解】解:因为正方形的周长为8个单位长度,
所以正方形的边长为2个单位长度.
表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,
因为2018÷8=252……2,
所以252圈余2个单位长度,
所以对应的数字是2.
故选:B.
【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.
二、填空题
1、 2 -5
【分析】把x=-10代入方程求出a的值;再根据嘉琪的方法求出x的值即可.
【详解】解:把x=-10代入方程,得:
解得,a=2
当a=2时,方程为
根据嘉琪的方法得:
解得,
故答案为:2;-5
【点睛】本题主要考查了一元一次方程的解和解一元一次方程,熟练掌握解方程的步骤是解答本题的关键.
2、-136
【分析】根据运算程序,列出等式计算即可.
【详解】(3×2-4×5) ×-2×5
=-14×9-10
=-136,
故答案为:-136.
【点睛】本题考查了计算器的使用,正确掌握计算器的使用方法是解题的关键.
3、
【分析】直接利用相反数的意义得出A,B表示的数,再利用P到A的距离是P到B的距离的得出PA的长度,然后分情况求解即可.
【详解】解:∵数轴上A、B表示的数互为相反数,并且两点间的距离是18,
∴A表示 9,B表示9或A表示9,B表示 9,
∵在A、B之间有一点P,P到A的距离是P到B的距离的,
∴PA=6,PB=12,
∴当A表示 9时,点P表示的数是-9+6=-3,
当A表示9时,点P表示的数是9-6=3,
故答案为:.
【点睛】此题主要考查了数轴以及相反数的意义,正确得出点A,B的位置是解题关键.
4、 ##﹣
【分析】(1)根据友好点的定义可得AB=2AC,经过计算可得答案;
(2)当点C在线段AB上时,存在三个时刻,即AC=CB或AC=CB或AC=2CB时,当点C在点A的左侧时,有两种情况,分别计算出m的值后,根据只有四个时刻,可得m的取值范围.
【详解】解:(1)设点C表示的数为x,则AC=x+2,AB=1+2=3,
∵点A是B、C两点的“友好点”,
∴当AB=2AC时,则3=2(x+2),解得x=﹣0.5,
所以点C表示的数是﹣0.5,
故答案为:﹣0.5;
(2)当点C在线段AB上时,若A、B、C三点满足“友好关系”,
存在三个时刻:
当 AC=CB时,即AB=2AC,则3=2(m+2),解得m=﹣0.5,
当AC=CB时,即CB=2AC,则1-m=2(m+2),解得m=﹣1,
当AC=2CB时,即m+2=2(1-m), 解得m=0,
∴当点C在线段AB上时,m=﹣0.5或﹣1或0,
当点C在点A的左侧时,有两种情况:
当AB=2CA时,即3=2(﹣2-m),解得m=﹣3.5,
当CB=2CA时,即1-m=2(﹣2-m),解得m=﹣5,
∴当点C在点A的左侧时,m=﹣3.5或﹣5,
∵只有四个时刻,
∴m的取值范围为﹣5<m≤-3.5.
故答案为:﹣5<m≤-3.5
【点睛】本题考查两点间的距离、一元一次方程等知识,熟练掌握线段的和差以及运用一元一次方程是解题关键.
5、1275
【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.
【详解】解:第①个图形中的黑色圆点的个数为:1,
第②个图形中的黑色圆点的个数为:=3,
第③个图形中的黑色圆点的个数为:=6,
第④个图形中的黑色圆点的个数为:=10,
...
第n个图形中的黑色圆点的个数为,
则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,
其中每3个数中,都有2个能被3整除,
33÷2=16...1,
16×3+2=50,
则第33个被3整除的数为原数列中第50个数,即=1275,
故答案为:1275.
【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.
6、 1或5
【分析】根据绝对值的定义求出a、b的值,再代入计算即可.
【详解】解:∵|a|=2,
∴a=±2,
当a=2时,|4 b|=1 2= 1,此时b不存在;
当a= 2时,|4 b|=3,
∴4 b=3或4 b= 3,
即b=1或b=7,
当a= 2,b=1时,a+b= 1;
当a= 2,b=7时,a+b=5.
故答案为: 1或5.
【点睛】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提,求出a、b的值是正确解答的关键.
7、 3 15或45
【分析】(1)设x小时后,两车相遇,根据两车一共行驶了360千米列出方程,即可解题;
(2)设x小时后,两车相遇,根据快车先走25分钟,即可计算快车行驶距离,根据共行驶了360千米列出方程,即可解题;
(3)设x小时后,快车与慢车相距720千米,分慢车在快车的后面,快车在慢车的后面两种情况,列方程求解.
【详解】解:(1)设x小时后,两车相遇,由题意得:
72x+48x=360,
解得x=3,
∴经过3小时两车相遇,
故答案为:3;
(2)设慢车行驶了x小时,两车相遇,由题意得:
72(x+)+48x=360,
解得x=,
∴慢车行驶了小时两车相遇,
故答案为:;
(3)设x小时后,快车与慢车相距720千米,
若慢车在快车的后面,
72x-48x=720-360,
解得x=15,
若快车在慢车的后面,
72x-48x=720+360,
解得x=45,
∴15小时或45小时后快车与慢车相距720千米,
故答案为:15或45.
【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.
8、1.5×1011
【分析】首先速度乘以时间,再把所得结果用科学记数法表示即可.
【详解】解∶ (3×108) × (5×102)
=3×108×5×102
= (3×5) × (108× 102 )
=15×1010
=1.5×1011(m).
故答案为: 1.5×1011.
【点睛】此题主要考查了用科学记数法表示较大的数,科学记数法表示数的一般形式为a×10",其中1≤|a|<10,确定a与n的值是解题的关键.
三、解答题
1、2、(1)A;(2)①B;②B;(3)①④
【分析】(1)计算2020÷3,根据计算结果即可求解;
(2)①从A类数中任取两个数进行计算,即可求解;
②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,再除以3,根据余数判断即可求解;
(3)根据m,n的余数之和,举例,观察即可判断.
【详解】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;
故答案为:A;
(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;
②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,得
(15×1+16×2+17×0)=47÷3=15…2,
∴余数为2,属于B类;
故答案为:①B;②B;
(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,
∵最后的结果属于C类,
∴m+2n能被3整除,即m+2n属于C类,①正确;
②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;
③若m=1,n=1,③错误;
④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;
综上,①④正确.
故答案为:①④.
【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.
3、见解析.
【分析】先化简,得出结果为;故将抄错不影响最终结果.
【详解】解:
=
=.
∵化简结果与无关.
∴将抄错不影响最终结果.
【点睛】本题主要考查了多项式的加减法运算,掌握去括号法则和合并同类项法则并熟练运用是解题关键.
4、当时,原方程无解;当时,
【分析】根据题意,分两种情况:①时,②时,根据解一元一次方程的方法,求出方程的解即可.
【详解】解:∵,
∴,
①当时,,
故方程无解.
②当时,
∴系数化为1得:;
∴关于x的方程的解为:当时,原方程无解;当时,.
【点睛】此题主要考查了解一元一次方程的方法,掌握解一元一次方程是解题的关键.
5、(1)①,⑤,②,④,③,⑥;(2)2x,;(3)这种长方体包装盒的体积是9
50cm3.
【分析】(1)根据长方体的展开图判断其相对面即可.
(2)根据长、宽、高的关系,用含x的式子表示长和高即可.
(3)根据题意列出方程求解即可.
【详解】(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是①与⑤,②与④,③与⑥.
故答案为:①,⑤,②,④,③,⑥;
(2)设长方体的宽为xcm,则长方体的长为2xcm,高为 cm.
故答案为:2x,;
(3)∵长是宽的2倍,
∴(96﹣x)2x,
解得:x=15,
∴这种长方体包装盒的体积=15×30×21=9450cm3,
答:这种长方体包装盒的体积是9450cm3.
【点睛】本题考查了长方体的展开图问题,掌握长方体的展开图、长方体的体积公式、解一元一次方程的方法是解题的关键.
6、(1)108;(2)110.4
【详解】分析:(1)根据平均数的求法列式进行计算即可得解;(2)用各自的成绩,分别乘以权重,列式计算即可得解.
本题解析:分析:(1)根据平均数的求法列式进行计算即可得解;(2)用各自的成绩,分别乘以权重,列式计算即可得解.
本题解析:
解:(1)x平时= (106+102+115+109)=×432=108
(2)总评成绩=108×10%+112×30%+110×60%=10.8+33.6+66=110.4
点睛:本题考查了加权平均数的求法,扇形统计图,根据扇形统计图得到总评成绩三部分的权是解答本题的关键.
第1页 / 共22页