课件23张PPT。数系的扩充与复数的概念数系的扩充创设情景,探究问题因计数的需要因不够减的需要,引入负数
因测量、分配中的等分问题引入分数
因度量的需要C古老的问题:“正方形的对角线是个‘奇怪’的数” 则可用反证法证明 在有理数集
中无解我们知道一元二次方程 x2 +1=0在实数集范围内无解.引入一个新数:合情推理,类比扩充
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,并且规定:
(1)i2??1;
(2)实数可以与 i 进行四则运算,在进行四则运算时,原有的加法与乘法的运算率(包括交换率、结合率和分配率)仍然成立。 引入新数,完善数系 ②复数Z=a+bi (a∈R, b∈R )把实数a,b叫做
复数的实部和虚部。1、定义:形如a+bi(a∈R,b∈R)的数叫复数,其中i叫虚数单位。③全体复数所组成的集合叫复数集,记作C。注意:①复数通常用字母z表示,即复数a+bi (a∈R,b∈R)可记作:z =a+bi (a∈R,b∈R),把这一表示形式叫做复数的代数形式。
复数有关概念其中 称为虚数单位。观察复数的代数形式当a= 0 且b= 0 时,则z=0当b= 0 时,则z为实数
当b ≠0 时,则z为虚数
当a= 0 且b ≠0时,则z为纯虚数
2、复数a+bi3.复数集,虚数集,实数集,纯虚数集之间的关系? 思 考?复数集虚数集实数集纯虚数集 复数的分类1、说明下列数中,那些是实数,哪些是虚数,哪些是纯虚数,并指出复数的实部与虚部。5 +802、判断下列命题是否正确:
(1)若a、b为实数,则z=a+bi为虚数
(2)若b为实数,则z=bi必为纯虚数
(3)若a为实数,则z= a 一定不是虚数即时训练,巩固新知 典例讲解,变式拓展 变式1:复数 当实数m= 时
z为纯虚数;当实数m= 时z为零。 复数相等的定义 根据两个复数相等的定义,设a, b, c, d∈R,两个复数a+bi和 c+di 相等规定为a+bi = c+di 如果两个复数的实部和虚部分别相等,我们就说这两个复数相等. 两个复数不能比较大小,只能由定义判断它们相 等或不相等。
例2 已知 ,其中 求x与y?解题思考:复数相等的问题转化求方程组的解的问题一种重要的数学思想:转化思想在几何上,我们用什么来表示实数?想一想?实数的几何意义类比实数的表示,可以用什么来表示复数?实数可以用数轴上的点来表示。实数 数轴上的点 (形)(数)一一对应 回忆…复数的一般形式?Z=a+bi(a, b∈R)实部!虚部!一个复数由什么唯一确定?复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)xyobaZ(a,b) 建立了平面直角坐标系来表示复数的平面x轴------实轴y轴------虚轴(数)(形)------复数平面 (简称复平面)一一对应z=a+bi复数的几何意义(一)(A)在复平面内,对应于实数的点都在实
轴上;
(B)在复平面内,对应于纯虚数的点都在
虚轴上;
(C)在复平面内,实轴上的点所对应的复
数都是实数;
(D)在复平面内,虚轴上的点所对应的复
数都是纯虚数。例1.辨析:1.下列命题中的假命题是( )D例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。 表示复数的点所在象限的问题复数的实部与虚部所满足的不等式组的问题转化(几何问题)(代数问题)一种重要的数学思想:数形结合思想复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量一一对应一一对应复数的几何意义(二)xyobaZ(a,b)z=a+bi小结xOz=a+biy复数的绝对值(复数的模)的几何意义:Z (a,b)对应平面向量 的模| |,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。| z | = | |小结 例3 求下列复数的模:
(1)z1=-5i (2)z2=-3+4i (3)z3=5-5i(2)满足|z|=5(z∈C)的z值有几个?思考:(1)满足|z|=5(z∈R)的z值有几个?(4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0) 这些复 数对应的点在复平面上构成怎样的图形? 小结xyO设z=x+yi(x,y∈R)满足|z|=5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–51.虚数单位i的引入;课堂小结3.复数的两种几何意义;关于无理数的发现
古希腊的毕达哥拉斯学派认为, 世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献.