人教版数学九年级上册教学设计(表格式)24.1.3 弧、弦、圆心角

文档属性

名称 人教版数学九年级上册教学设计(表格式)24.1.3 弧、弦、圆心角
格式 doc
文件大小 111.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-10-15 16:33:59

图片预览

文档简介

24.1.3 弧、弦、圆心角(教学设计)
教学时间 课题 24.1.3 弧、弦、圆心角 课型 新授课
教学目标 知 识和能 力 通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;
过 程和方 法 (1)通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力;(2)利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题.
情 感态 度价值观 培养学生积极探索数学问题的态度及方法.
教学重点 探索圆心角、弧、弦之间关系定理并利用其解决相关问题.
教学难点 圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.
教学准备 教师 多媒体课件 学生 “五个一”
课 堂 教 学 程 序 设 计 设计意图
一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系 同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB=∠A′O′B′;由两圆的半径相等,可以得到∠OAB=∠OBA=∠O′A′B′=∠O′B′A′;由△AOB≌△A′O′B′,可得到AB=A′B′;由旋转法可知.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以和重合,弦AB与弦A′B′重合,即,AB=A′B′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题.二、主体活动,巩固新知,进一步理解三量关系定理.活动2:1.如图2,在⊙O中,,∠ACB=60°,求证∠AOB=∠AOC=∠BOC.图2学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由,得到,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵ ∴ AB=AC,△ABC是等腰三角形.又 ∠ACB=60°,∴ △ABC是等边三角形,AB=BC=CA.∴ ∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数. 图3学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′. 图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系.
作业设计 必做 习题24.1 第2、3题,第10题.
选做 P88:11、12
教学反思