专题1.4 探索勾股定理(直通中考)
一、单选题
(2023·四川泸州·统考中考真题)
1.《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数,,的计算公式:,,,其中,,是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )
A.3,4,5 B.5,12,13 C.6,8,10 D.7,24,25
(2022·山东济宁·统考中考真题)
2.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A. B. C. D.
(2021·山东滨州·统考中考真题)
3.在中,若,,,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
(2021·内蒙古鄂尔多斯·统考中考真题)
4.如图,在中,,将边沿折叠,使点B落在上的点处,再将边沿折叠,使点A落在的延长线上的点处,两条折痕与斜边分别交于点N、M,则线段的长为( )
A. B. C. D.
(2021·四川凉山·统考中考真题)
5.如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )
A. B.2 C. D.
(2020·山东淄博·统考中考真题)
6.如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是( )
A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c2
(2020·广西·统考中考真题)
7.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )
A.寸 B.寸 C.寸 D.寸
(2011·福建泉州·中考真题)
8.如图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
A. B.
C. D.
(2019·湖北黄冈·统考中考真题)
9.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中点,D是AB的中点,且,则这段弯路所在圆的半径为( )
A. B. C. D.
(2019·浙江宁波·统考中考真题)
10.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )
A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
(2012·湖北武汉·中考真题)
11.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是( )
A.7 B.8 C.9 D.10
(2011·北京·中考真题)
12.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是( )
A.2m B.3m C.6m D.9m
(2014·江苏淮安·统考中考真题)
13.如图,在边长为1个单位长度的小正方形组成的网格中,点、都是格点,则线段的长度为( )
A.5 B.6 C.7 D.25
二、填空题
(2023·湖北随州·统考中考真题)
14.如图,在中,,D为AC上一点,若是的角平分线,则 .
(2022·辽宁朝阳·统考中考真题)
15.如图,在RtABC中,∠ACB=90°,AB=13,BC=12,分别以点B和点C为圆心、大于BC的长为半径作弧,两弧相交于E,F两点,作直线EF交AB于点D,连接CD,则ACD的周长是 .
(2022·内蒙古鄂尔多斯·统考中考真题)
16.如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=,则AB的长是 .
(2022·湖北黄冈·统考中考真题)
17.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 (结果用含m的式子表示).
(2022·四川遂宁·统考中考真题)
18.“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 .
(2022·黑龙江牡丹江·统考中考真题)
19.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= .
(2021·湖南常德·统考中考真题)
20.如图.在中,,平分,于E,若,则的长为 .
(2021·湖南岳阳·统考中考真题)
21.《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图, 设门高为尺,根据题意,可列方程为 .
(2021·四川成都·统考中考真题)
22.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为 .
(2020·湖北武汉·中考真题)
23.如图,折叠矩形纸片,使点落在边的点处,为折痕,,.设的长为,用含有的式子表示四边形的面积是 .
(2020·黑龙江绥化·中考真题)
24.在中,,若,则的长是 .
(2011·湖南常德·中考真题)
25.中,,,边上的高,则长为 .
(2019·辽宁葫芦岛·中考真题)
26.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是 .
(2019·湖南邵阳·统考中考真题)
27.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形ABCD的面积是 .
三、解答题
(2020·浙江温州·统考中考真题)
28.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE;
(2)连结AE,当BC=5,AC=12时,求AE的长.
(2019·河北·统考中考真题)
29.已知:整式,整式.
尝试: 化简整式.
发现: ,求整式.
联想:由上可知,,当n>1时为直角三角形的三边长,如图.填写下表中的值:
直角三角形三边
勾股数组Ⅰ / 8
勾股数组Ⅱ /
(2019·四川巴中·统考中考真题)
30.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.
①求证:;
②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.
(2019·浙江·中考真题)
31.如图,在的方格中,的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可.
(2011·浙江湖州·中考真题)
32.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
(2018·湖南湘西·统考中考真题)
33.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
(1)求证:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周长.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.C
【分析】首先证明出,得到a,b是直角三角形的直角边然后由,,是互质的奇数逐项求解即可.
【详解】∵,
∴.
∵,
∴.
∴a,b是直角三角形的直角边,
∵,是互质的奇数,
∴A.,
∴当,时,,,,
∴3,4,5能由该勾股数计算公式直接得出;
B.,
∴当,时,,,,
∴5,12,13能由该勾股数计算公式直接得出;
C.,,
∵,是互质的奇数,
∴6,8,10不能由该勾股数计算公式直接得出;
D.,
∴当,时,,,,
∴7,24,25能由该勾股数计算公式直接得出.
故选:C.
【点睛】本题考查了勾股数的应用,通过,,是互质的奇数这两个条件去求得符合题意的t的值是解决本题的关键.
2.A
【分析】根据题意可得AD = AB = 2, ∠B = ∠ADB, CE= DE, ∠C=∠CDE,可得∠ADE = 90°,继而设AE=x,则CE=DE=3-x,根据勾股定理即可求解.
【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
∴AD = AB = 2, ∠B = ∠ADB,
∵折叠纸片,使点C与点D重合,
∴CE= DE, ∠C=∠CDE,
∵∠BAC = 90°,
∴∠B+ ∠C= 90°,
∴∠ADB + ∠CDE = 90°,
∴∠ADE = 90°,
∴AD2 + DE2 = AE2,
设AE=x,则CE=DE=3-x,
∴22+(3-x)2 =x2,
解得
即AE=
故选A
【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.
3.D
【分析】根据题意画出图形,然后作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.
【详解】解:作CD⊥AB于点D,如右图所示,
∵∠ACB=90°,AC=3,BC=4,
∴AB==5,
∵,
∴,
解得CD=2.4,
故选:D.
【点睛】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.
4.B
【分析】利用勾股定理求出AB=10,利用等积法求出CN=,从而得AN=,再证明∠NMC=∠NCM=45°,进而即可得到答案.
【详解】解:∵
∴AB=,
∵S△ABC=×AB×CN=×AC×BC
∴CN=,
∵AN=,
∵折叠
∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,
∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,
∴∠B'CN +∠A'CM=45°,
∴∠MCN=45°,且CN⊥AB,
∴∠NMC=∠NCM=45°,
∴MN=CN=,
∴A'M=AM=AN MN=-=.
故选B.
【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.
5.D
【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.
【详解】解:∵∠ACB=90°,AC=8,BC=6,
∴AB==10,
∵△ADE沿DE翻折,使点A与点B重合,
∴AE=BE,AD=BD=AB=5,
设AE=x,则CE=AC-AE=8-x,BE=x,
在Rt△BCE中
∵BE2=BC2+CE2,
∴x2=62+(8-x)2,解得x=,
∴CE==,
故选:D.
【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.
6.A
【详解】设EF=x,DF=y,根据三角形重心的性质得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加减消元法消去x、y得到a、b、c的关系.
【解答】解:设EF=x,DF=y,
∵AD,BE分别是BC,AC边上的中线,
∴点F为△ABC的重心,AF=AC=b,BD=a,
∴AF=2DF=2y,BF=2EF=2x,
∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,
在Rt△AFB中,4x2+4y2=c2,①
在Rt△AEF中,4x2+y2=b2,②
在Rt△BFD中,x2+4y2=a2,③
②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④
①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.
故选:A.
【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了勾股定理.
7.C
【分析】画出直角三角形,根据勾股定理即可得到结论.
【详解】设OA=OB=AD=BC=,过D作DE⊥AB于E,
则DE=10,OE=CD=1,AE=.
在Rt△ADE中,
,即,
解得.
故门的宽度(两扇门的和)AB为101寸.
故选:C.
【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
8.B
【分析】根据图示可知,阴影部分的面积是边长为m+n的正方形的面积减去中间白色的正方形的面积m2+n2,即为四个直角边长分别为m、n的直角三角形的面积.
【详解】解:∵大正方形面积减去小正方形面积得到图②的面积,
∴.
即,
故选B.
【点睛】本题是利用几何图形的面积来验证等式,解题的关键是利用勾股定理及三角形面积公式正确表示出左右两边的阴影部分的面积.
9.A
【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.
【详解】解:,
,
在中,,
设半径为得:,
解得:,
这段弯路的半径为
故选A.
【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.
10.C
【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.
【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,
由勾股定理得,c2=a2+b2,
阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),
较小两个正方形重叠部分的长=a-(c-b),宽=a,
则较小两个正方形重叠部分底面积=a(a+b-c),
∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,
故选C.
【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
11.C
【详解】解:∵△DEF由△DEA翻折而成,
∴EF=AE=5,
在Rt△BEF中,
∵EF=5,BF=3,
∴,
∴AB=AE+BE=5+4=9,
∵四边形ABCD是矩形,
∴CD=AB=9
故选:C.
【点睛】本题考查翻折变换(折叠问题).
12.C
【分析】根据勾股定理求出斜边的长度,再根据三角形的面积公式,Rt△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.
【详解】设内切圆半径为r,
由勾股定理可得斜边=,
则利用面积法可得:,
解得.
∴管道为(m),
故选:C.
【点睛】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.
13.A
【分析】建立格点三角形,利用勾股定理求解的长度即可.
【详解】解:如图所示:
.
故选:A.
【点睛】本题考查了勾股定理的知识,解题的关键是掌握格点三角形中勾股定理的应用.
14.5
【分析】首先证明,,设,在中,利用勾股定理构建方程即可解决问题.
【详解】解:如图,过点D作的垂线,垂足为P,
在中,∵,
∴,
∵是的角平分线,
∴,
∵,
∴,
∴,,
设,
在中,∵,,
∴,
∴,
∴.
故答案为:5.
【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
15.18
【分析】由题可知,EF为线段BC的垂直平分线,则CD=BD,由勾股定理可得AC5,则△ACD的周长为AC+AD+CD=AC+AD+BD=AC+AB,即可得出答案.
【详解】解:由题可知,EF为线段BC的垂直平分线,
∴CD=BD,
∵∠ACB=90°,AB=13,BC=12,
∴AC5,
∴△ACD的周长为AC+AD+CD=AC+AD+BD=AC+AB=5+13=18.
故答案为:18.
【点睛】本题考查尺规作图、线段垂直平分线的性质、勾股定理,熟练掌握线段垂直平分线的性质及勾股定理是详解本题的关键.
16.12
【分析】延长BE交AD于点F,由“ASA”可证△BCE≌△FDE,可得DF=BC=5,BE=EF,由勾股定理可求AB的长.
【详解】如图,延长BE交AD于点F,
∵点E是DC的中点,
∴DE=CE,
∵AB⊥BC,AB⊥AD,
∴AD∥BC,
∴∠ D=∠BCE,∠FED=∠BEC,
∴ △BCE≌△FDE(ASA),
∴DF=BC=5,BE=EF,
∴BF=2BE=13,AF=5,
在Rt△ABF中,由勾股定理可得AB=12.
故答案为:12.
【点睛】本题考查了全等三角形的判定和性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.
17.m2+1
【分析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.
【详解】∵2m为偶数,
∴设其股是a,则弦为a+2,
根据勾股定理得,(2m)2+a2=(a+2)2,
解得a=m2-1,
∴弦长为m2+1,
故答案为:m2+1.
【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.
18.127
【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
【详解】解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),
第三代勾股树中正方形有1+2+22+23=15(个),
......
∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),
故答案为:127.
【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.
19.3.
【详解】试题分析:如图,过点D作DE⊥AB于E,
∵∠C=90°,AC=6,BC=8,
∴AB=,
∵AD平分∠CAB,
∴CD=DE,
∴S△ABC=AC CD+AB DE=AC BC,
即×6 CD+×10 CD=×6×8,
解得CD=3.
考点:1.角平分线的性质,2.勾股定理
20.
【分析】证明三角形全等,再利用勾股定理即可求出.
【详解】解:由题意:平分,于,
,,
又为公共边,
,
,
在中,,由勾股定理得:
,
故答案是:.
【点睛】本题考查了三角形全等及勾股定理,解题的关键是:通过全等找到边之间的关系,再利用勾股定理进行计算可得.
21.
【分析】先表示出BC的长,再利用勾股定理建立方程即可.
【详解】解:由题可知,6尺8寸即为6.8尺,1丈即为10尺;
∵高比宽多6尺8寸,门高 AB 为 x 尺,
∴BC=尺,
∴可列方程为:,
故答案为:.
【点睛】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.
22.100.
【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A所代表的正方形的面积A=36+64=100.
【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.
故答案为:100.
【点睛】本题考查了正方形的面积公式以及勾股定理.
23.
【分析】首先根据题意可以设DE=EM=x,在三角形AEM中用勾股定理进一步可以用t表示出x,再可以设CF=y,连接MF,所以BF=2 y,在三角形MFN与三角形MFB中利用共用斜边,根据勾股定理可求出用t表示出y,进而根据四边形的面积公式可以求出答案.
【详解】设DE=EM=x,
∴,
∴x= ,
设CF=y,连接FM,
∴BF=2 y,
又∵FN= y,NM=1,
∴,
∴y=,
∴四边形的面积为:= 1,
故答案为:.
【点睛】本题主要考查了勾股定理的综合运用,熟练掌握技巧性就可得出答案.
24.17
【分析】在Rt△ABC中,根据勾股定理列出方程即可求解.
【详解】解:∵在Rt△ABC中,∠C=90°,AB-AC=2,BC=8,
∴AC2+BC2=AB2,
即(AB-2)2+82=AB2,
解得AB=17.
故答案为:17.
【点睛】本题考查了勾股定理,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.
25.4或14##14或4
【分析】根据题意,可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.
【详解】解;在中,,,BC边上高,
如图所示,当为锐角三角形时,
在中,,,由勾股定理得:
,
∴,
在中,,由勾股定理得:
,
∴,
∴BC的长为:;
如图所示,当为钝角三角形时,
在中,,由勾股定理得:
,
∴,
在中,,由勾股定理得:
,
∴,
∴BC的长为:;
综上可得:BC的长为:4或14.
故答案为:4或14.
【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.
26.7或.
【分析】由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.
【详解】在Rt△ABC中,,
(1)当∠EDB′=90°时,如图1,
过点B′作B′F⊥AC,交AC的延长线于点F,
由折叠得:AB=AB′=13,BD=B′D=CF,
设BD=x,则B′D=CF=x,B′F=CD=12﹣x,
在Rt△AFB′中,由勾股定理得:
,
即:x2﹣7x=0,解得:x1=0(舍去),x2=7,
因此,BD=7.
(2)当∠DEB′=90°时,如图2,此时点E与点C重合,
由折叠得:AB=AB′=13,则B′C=13﹣5=8,
设BD=x,则B′D=x,CD=12﹣x,
在中,由勾股定理得:,解得:,
因此.
故答案为7或.
【点睛】考查轴对称的性质、直角三角形的性质、勾股定理等知识,分类讨论思想的应用注意分类的原则是不遗漏、不重复.
27.4
【分析】应用勾股定理和正方形的面积公式可求解.
【详解】∵勾,弦,
∴股b=,
∴小正方形的边长=,
∴小正方形的面积
故答案为4
【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.
28.(1)见解析;(2)13
【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解.
【详解】解:(1)∵
∴
在△ABC和△DCE中
∴△ABC≌△DCE
(2)由(1)可得BC=CE=5
在直角三角形ACE中
【点睛】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键.
29.尝试:;发现:;联想:17,37.
【分析】先根据完全平方公式和整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.
【详解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2.
∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;
当n2﹣1=35时,n2+1=37.
故答案为17;37.
【点睛】本题考查了勾股数的定义.掌握勾股数的定义是解答本题的关键.
30.①证明见解析;②见解析.
【分析】①通过AAS证得,根据全等三角形的对应边相等证得结论;
②利用等面积法证得勾股定理.
【详解】①证明:∵,
∴.
∵,
∴.
在△AEC与△BCD中,
∴.
∴;
②解:由①知:
∴
.
又∵
.
∴.
整理,得.
【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.
31.见解析.
【分析】图1,根据格点的特征,利用全等三角形画出图形即可;图2:根据格点的特征,利用全等三角形及两锐角互余的三角形为直角三角形画出图形即可;图3:根据格点的特征,结合线段垂直平分线的判定定理画出图形即可.
【详解】如图所示:
【点睛】本题考查了格点三角形中的作图,正确利用格点的特征是解决问题的关键.
32.10
【分析】试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.
试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.
考点:1.勾股定理的运用;2.矩形性质.
【详解】请在此输入详解!
33.(1)证明见解析;(2)16.
【分析】(1)由全等三角形的判定定理SAS即可证得结论;
(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.
【详解】证明:(1)在矩形ABCD中,AD=BC,∠A=∠B=90°.
∵E是AB的中点,
∴AE=BE,
在△ADE与△BCE中,
,
∴△ADE≌△BCE(SAS);
(2)由(1)知:△ADE≌△BCE,则DE=EC,
在直角△ADE中,AE=4,AE=AB=3,
由勾股定理知,DE==5,
∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.
【点睛】本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
答案第1页,共2页
答案第1页,共2页