9.16 分组分解法 课件(共21张PPT)

文档属性

名称 9.16 分组分解法 课件(共21张PPT)
格式 pptx
文件大小 1.3MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2023-10-19 12:51:39

图片预览

文档简介

(共21张PPT)
第九章 整式
第5节 因式分解
9.16 分组分解法
教学目标:
1. 理解分组分解法的概念.
2. 掌握用“二二”分组分解法分解四项式.
3. 在用分组分解法进行因式分解的过程中培养发散思维的能力.
教学重点和难点:
选择合理的分组方法对四项式进行正确的因式分解.
思考
如何将多项式ax+ay+bx+by、a2+2ab+b2-1分解因式呢
这两个多项式有什么特征
多项式ax+ay+bx+by前面两项和后面两项分别有公因式a、b,多项式a2+2ab+b2-1前三项为完全平方式.
可以把多项式ax+ay+bx+by分成(ax+ay)与(bx+by)两组,
从前一组ax+ay中提取公因式a,得到另一个因式x+y;
从后一组bx+by中提取公因式b,得到另一个因式也是x+y.
这样,就可以把这个多项式分解因式.
思考:
如何将多项式ax+ay+bx+by分解因式?
解:ax+ay+bx+by
=(ax+ay)+(bx+by)
=a(x+y)+ b(x+y)
=(x+y)(a+b)
方法二:
解:ax+ay+bx+by
=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b) (x+y)
还有其他分组方法吗?
方法不同,答案相同.
可按字母特征分组
对于多项式a+2ab+b2-1,可以将a+2ab+b2作为一组,它是个完全平方式,即a+2ab+b2=(a+b)2,然后用公式法分解因式,即利用分组来分解因式的方法叫做分组分解法.a+2ab+b2-1=(a+b)2-1=(a+b+1)(a+b-1).例题1 分解因式:
教材第53页
2ac–6ad+bc–3bd.
分析 把这个多项式适当分成两组,例如将前两项分为一组,后两项分为一组,第一组提取公因式2a后另一个因式是c-3d;第二组提取公因式b后另一个因式也是c-3d.这样就可以分解因式了.

2ac–6ad+bc–3bd
=(2ac–6ad)+(bc–3bd)
=2a(c–3d)+b(c–3d)
=(c–3d)(2a+b).
例题2 分解因式:
教材第54页
6k2+9km–6mn–4kn.

6k2+9km – 6mn–4kn
=(6k2+9km) – (6mn+4kn)
=3k(2k+3m) –2n (3m+2k)
= (2k+3m)(3k–2n).
例题3 分解因式:
教材第54页
2x3–2x2y+8y–8x.

2x3–2x2y+8y–8x
=2(x3–x2y+4y–4x)
=2[(x3–x2y) +(4y–4x)]
=2[x2(x-y)-4(x-y)]
=2(x-y)(x2-4)
=2(x-y)(x+2)(x-2).
思考
如何把x2-4xy+4y2-4分解因式
这个多项式有什么特征
多项式x2-4xy+4y2-4前面三项可以组成一个完全平方,后面一项是一个平方数,再将前三项的完全平方式和最后一项的平方数组成平方差公式进行因式分解.
分解因式:
(1)3ax2+6axy+3ay2 ; (2)(a+b)2-12(a+b)+36.
解: (1)原式=3a(x2+2xy+y2)
=3a(x+y)2;
分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;
(2)中将a+b看成一个整体,设a+b=m,则原式化为
m2-12m+36.
(2)原式=(a+b)2-2·(a+b) ·6+62
=(a+b-6)2.
例题4
因式分解:
(1)-3a2x2+24a2x-48a2;
(2)(a2+4)2-16a2.
变式训练
=(a2+4+4a)(a2+4-4a)
解:(1)原式=-3a2(x2-8x+16)
=-3a2(x-4)2;
(2)原式=(a2+4)2-(4a)2
=(a+2)2(a-2)2.
有公因式要先提公因式
要检查每一个多项式的因式,看能否继续分解.
多项式分解因式的一般步骤:
1. 如果多项式的各项有公因式,那么先提公因式;
2. 如果各项没有公因式,那么可以尝试运用公式来分解;
3. 如果用上述方法不能分解,那么可以尝试用分组来分解;
4. 分解因式,必须进行到每一个多项式都不能再分解为止.
口诀:一提 二套 三分 四检
总结归纳
(1)已知a-b=3,求a(a-2b)+b2的值;
(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.
原式=2×52=50.
解:(1)原式=a2-2ab+b2=(a-b)2.
当a-b=3时,原式=32=9.
(2)原式=ab(a2+2ab+b2)=ab(a+b)2.
 当ab=2,a+b=5时,
例题5
1.分解因式: x2-xy+ax-ay.
分析 前两项一组,提取公因式x,后两项一组,提取公因式a ,然后两组之间再提取公因式 (x-y)整理即可.
解: x2 - xy +ax – ay
=(x2 - xy) + (ax - ay)
= x(x - y) + a(x - y)
=(x+a )(x-y)故答案为: (x+a)(x - y)
2.[2022年奉贤期末]分解因式:a2-b2 +2a2b-2ab2 .
解: 原式= (a + b)(a - b) + 2ab(a - b)
=(a - b)(a + b + 2ab)
3.分解因式:x2 - y2 + 4y - 4 .
解: 原式= x2 -y2 + 4y – 4
= x2 - (y2 - 4y + 4)
= x2 - (y - 2) 2
=(x+y- 2)(x -y + 2)
故答案为: (x+y -2)(x- y + 2).
分析 先分组成x2 -(y2 - 4y + 4),再利用完全平方公式化为x2-(y - 2)2 ,最后利用平方差公式解答.
4.分解因式:a4 + 4b2c2 - a2b2 - 4a2c2.
解: 原式= (a4 - a2b2) -(4a2c2 - 4b2c2)
= a2 (a2 - b2) - 4c2 (a2 - b2)
= (a2 - b2)(a2 - 4c2)
=(a + b)(a - b)(a + 2c)(a - 2c).
分析 利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.
5.如果a+b=0,求a3 –2b3+ a2b –2ab2的值.
解:原式= a3 +a2b- (2b3 +2ab2 )
= a2 (a +b)- 2b2 (a +b )
= (a +b) ( a2 - 2b2 )
=0
6.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积.
解:根据题意,得
6.82-4×1.62
=6.82- (2×1.6)2
=6.82-3.22
=(6.8+3.2)(6.8 - 3.2)
=10×3.6
=36 (cm2)
答:剩余部分的面积为36 cm2.
分组法因式分解
公式
平方差公式a2-b2=(a+b)(a-b)
步骤
一分:先分组;
二提:公因式;
三套:公式;
四查:多项式的因式分解有没有分解到不能再分解为止.
完全平方公式a2±2ab+b2=(a±b)2