专题22.14 二次函数y=ax +bx+c(a≠0)的图象与性质
(直通中考)(培优练)
【要点回顾】二次函数y=ax +bx+c(a≠0)的图象与性质
开口方向:时,开口向上;,开口向下,
对称轴:
顶点坐标:
;
一、单选题
(2023·湖南娄底·统考中考真题)
1.已知二次函数的图象如图所示,给出下列结论:①;②;③(m为任意实数);④若点和点在该图象上,则.其中正确的结论是( )
A.①② B.①④ C.②③ D.②④
(2023·山东日照·统考中考真题)
2.在平面直角坐标系中,抛物线,满足,已知点,,在该抛物线上,则m,n,t的大小关系为( )
A. B. C. D.
(2023·山东·统考中考真题)
3.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是( )
A. B. C. D.
(2023·黑龙江牡丹江·统考中考真题)
4.如图,抛物线经过点,.下列结论:①;②;③若抛物线上有点,,,则;④方程的解为,,其中正确的个数是( )
A.4 B.3 C.2 D.1
(2023·山东烟台·统考中考真题)
5.如图,抛物线的顶点的坐标为,与轴的一个交点位于0合和1之间,则以下结论:①;②;③若图象经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
(2023·江苏扬州·统考中考真题)
6.已知二次函数(a为常数,且),下列结论:
①函数图像一定经过第一、二、四象限;②函数图像一定不经过第三象限;③当时,y随x的增大而减小;④当时,y随x的增大而增大.其中所有正确结论的序号是( )
A.①② B.②③ C.② D.③④
(2023·四川乐山·统考中考真题)
7.如图,抛物线经过点,且,有下列结论:①;②;③;④若点在抛物线上,则.其中,正确的结论有( )
A.4个 B.3个 C.2个 D.1个
(2023·四川南充·统考中考真题)
8.抛物线与x轴的一个交点为,若,则实数的取值范围是( )
A. B.或
C. D.或
(2023·四川凉山·统考中考真题)
9.已知抛物线的部分图象如图所示,则下列结论中正确的是( )
A. B. C. D.(为实数)
(2023·四川泸州·统考中考真题)
10.已知二次函数(其中是自变量),当时对应的函数值均为正数,则的取值范围为( )
A. B.或
C.或 D.或
(2023·四川达州·统考中考真题)
11.如图,拋物线(为常数)关于直线对称.下列五个结论:①;②;③;④;⑤.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
(2023·黑龙江齐齐哈尔·统考中考真题)
12.如图,二次函数图像的一部分与x轴的一个交点坐标为,对称轴为直线,结合图像给出下列结论:
①;②;③;
④关于x的一元二次方程有两个不相等的实数根;
⑤若点,均在该二次函数图像上,则.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
(2023·四川广安·统考中考真题)
13.如图所示,二次函数为常数,的图象与轴交于点.有下列结论:①;②若点和均在抛物线上,则;③;④.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
(2023·湖南·统考中考真题)
14.已知是抛物线(a是常数,上的点,现有以下四个结论:①该抛物线的对称轴是直线;②点在抛物线上;③若,则;④若,则其中,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
二、填空题
(2023·福建·统考中考真题)
15.已知抛物线经过两点,若分别位于抛物线对称轴的两侧,且,则的取值范围是 .
(2022·江苏盐城·统考中考真题)
16.若点在二次函数的图象上,且点到轴的距离小于2,则的取值范围是 .
(2022·山东枣庄·统考中考真题)
17.小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 .(填序号,多选、少选、错选都不得分)
(2022·湖北荆门·统考中考真题)
18.如图,函数y=的图象由抛物线的一部分和一条射线组成,且与直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3).设t=,则t的取值范围是 .
(2022·吉林长春·统考中考真题)
19.已知二次函数,当时,函数值y的最小值为1,则a的值为 .
(2022·内蒙古呼和浩特·统考中考真题)
20.在平面直角坐标系中,点和点的坐标分别为和,抛物线与线段只有一个公共点,则的取值范围是 .
三、解答题
(2023·北京·统考中考真题)
21.在平面直角坐标系中,,是抛物线上任意两点,设抛物线的对称轴为.
(1)若对于,有,求的值;
(2)若对于,,都有,求的取值范围.
(2023·浙江绍兴·统考中考真题)
22.已知二次函数.
(1)当时,
①求该函数图象的顶点坐标.
②当时,求的取值范围.
(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.
(2023·浙江嘉兴·统考中考真题)
23.在二次函数中,
(1)若它的图象过点,则t的值为多少?
(2)当时,y的最小值为,求出t的值:
(3)如果都在这个二次函数的图象上,且,求m的取值范围.
(2022·贵州安顺·统考中考真题)
24.在平面直角坐标系中,如果点的横坐标和纵坐标相等,则称点为和谐点,例如:点,,,……都是和谐点.
(1)判断函数的图象上是否存在和谐点,若存在,求出其和谐点的坐标;
(2)若二次函数的图象上有且只有一个和谐点.
①求,的值;
②若时,函数的最小值为-1,最大值为3,求实数的取值范围.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【分析】由抛物线的开口向下,与y轴交于正半轴,对称轴在y轴的左边,可得,, ,故①不符合题意;当与时的函数值相等,可得,故②符合题意;当时函数值最大,可得,故③不符合题意;由点和点在该图象上,而,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.
【详解】解:∵抛物线的开口向下,与y轴交于正半轴,对称轴在y轴的左边,
∴,,,
∴,
∴,故①不符合题意;
∵对称轴为直线,
∴当与时的函数值相等,
∴,故②符合题意;
∵当时函数值最大,
∴,
∴;故③不符合题意;
∵点和点在该图象上,
而,且离抛物线的对称轴越远的点的函数值越小,
∴.故④符合题意;
故选:D.
【点睛】本题考查的是二次函数的图象与性质,熟记二次函数的开口方向,与y轴的交点坐标,对称轴方程,增减性的判定,函数的最值这些知识点是解本题的关键.
2.C
【分析】利用解不等式组可得且,即可判断二次函数的对称轴位置,再利用函数的增减性判断即可解题.
【详解】解不等式组可得:,且
所以对称轴的取值范围在,
由对称轴位置可知到对称轴的距离最近的是,其次是,最远的是,
即根据增减性可得,
故选C.
【点睛】本题考查二次函数的图像和性质,求不等组的解集,掌握二次函数的图像和性质是解题的关键.
3.D
【分析】由题意可得:三倍点所在的直线为,根据二次函数的图象上至少存在一个“三倍点”转化为和至少有一个交点,求,再根据和时两个函数值大小即可求出.
【详解】解:由题意可得:三倍点所在的直线为,
在的范围内,二次函数的图象上至少存在一个“三倍点”,
即在的范围内,和至少有一个交点,
令,整理得:,
则,解得,
,
∴,
∴或
当时,,即,解得,
当时,,即,解得,
综上,c的取值范围是,
故选:D.
【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.
4.D
【分析】根据二次函数图象可知:,,,得出,故①不正确;将点,代入,得出:,再求出,故②不正确;根据函数图象可得,故③正确;根据方程,,可知方程无解,故④不正确.
【详解】解:根据二次函数图象可知:,,,
∴,
∴,故①不正确;
将点,代入得出:,
得出:,
∴,
再代入得出:,故②不正确;
∵,
∴,,
∵,
∴,
根据图象可知:,故③正确;
∵方程,
∴,
∴方程无解,故④不正确;
正确的个数是1个,
故选:D.
【点睛】本题考查二次函数,掌握二次函数的性质是解题的关键.
5.C
【分析】根据图象,分别得出a、b、c的符号,即可判断①;根据对称轴得出,再根据图象得出当时,,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程移项可得,根据该方程无实数根,得出抛物线与直线没有交点,即可判断④.
【详解】解:①∵该抛物线开口向下,
∴,
∵该抛物线的对称轴在y轴左侧,
∴,
∵该抛物线于y轴交于正半轴,
∴,
∴,
故①正确,符合题意;
②∵,
∴该抛物线的对称轴为直线,则,
当时,,
把得:当时,,
由图可知:当时,,
∴,
故②不正确,不符合题意;
③∵该抛物线的对称轴为直线,
∴到对称轴的距离为,到对称轴的距离为,
∵该抛物线开口向下,
∴在抛物线上的点离对称轴越远,函数值越小,
∵,
∴,
故③正确,符合题意;
④将方程移项可得,
∵无实数根,
∴抛物线与直线没有交点,
∵,
∴.故④正确
综上:正确的有:①③④,共三个.
故选:C.
【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.
6.B
【分析】根据二次函数的图象与性质进行逐一分析即可.
【详解】解:∵抛物线对称轴为,,
∴二次函数图象必经过第一、二象限,
又∵,
∵,
∴,
当时,抛物线与x轴无交点,二次函数图象只经过第一、二象限,
当时,抛物线与x轴有两个交点,二次函数图象经过第一、二、四象限,
故①错误;②正确;
∵抛物线对称轴为,,
∴抛物线开口向上,
∴当时,y随x的增大而减小,故③正确;
∴当时,y随x的增大而增大,故④错误,
故选:B.
【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数图象与各项系数符号之间的关系是解题的关键.
7.B
【分析】抛物线经过点,且,,可以得到,,从而可以得到b的正负情况,从而可以判断①;继而可得出,则,即可判断②;由图象可知,当时,,即,所以有,从而可得出,即可判断③;利用,再根据,所以,从而可得,即可判断④.
【详解】解 :∵抛物线的图象开口向上,
∴,
∵抛物线经过点,且,
∴,
∴,故①正确;
∵,,
∴
∴,故②正确;
由图象可知,当时,,即,
∴
∵,,
∴,故③正确;
∵,
又∵,
∴,
∵抛物线的图象开口向上,
∴,故④错误.
∴正确的有①②③共3个,
故选:B.
【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,熟练掌握根据二次函数图象性质是解题的关键.
8.B
【分析】根据抛物线有交点,则有实数根,得出或,分类讨论,分别求得当和时的范围,即可求解.
【详解】解:∵抛物线与x轴有交点,
∴有实数根,
∴
即
解得:或,
当时,如图所示,
依题意,当时,,
解得:,
当时,,解得,
即,
当时,
当时,,
解得:
∴
综上所述,或,
故选:B.
【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.
9.C
【分析】根据开口方向,与y轴交于负半轴和对称轴为直线可得,,由此即可判断A;根据对称性可得当时,,当时,,由此即可判断B、C;根据抛物线开口向上,对称轴为直线,可得抛物线的最小值为,由此即可判断D.
【详解】解:∵抛物线开口向上,与y轴交于负半轴,
∴,
∵抛物线对称轴为直线,
∴,
∴,
∴,故A中结论错误,不符合题意;
∵当时,,抛物线对称轴为直线,
∴当时,,
∴,故B中结论错误,不符合题意;
∵当时,,抛物线对称轴为直线,
∴当时,,
∴,
又∵,
∴,故C中结论正确,符合题意;
∵抛物线对称轴为直线,且抛物线开口向上,
∴抛物线的最小值为,
∴,
∴,故D中结论错误,不符合题意;
故选C.
【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟练掌握二次函数的相关知识是解题的关键.
10.D
【分析】首先根据题意求出对称轴,然后分两种情况:和,分别根据二次函数的性质求解即可.
【详解】∵二次函数,
∴对称轴,
当时,
∵当时对应的函数值均为正数,
∴此时抛物线与x轴没有交点,
∴,
∴解得;
当时,
∵当时对应的函数值均为正数,
∴当时,,
∴解得,
∴,
∴综上所述,
当时对应的函数值均为正数,则的取值范围为或.
故选:D.
【点睛】此题考查了二次函数的图象和性质,解题的关键是分两种情况讨论.
11.B
【分析】由抛物线的开口方向、与y轴交点以及对称轴的位置可判断a、b、c的符号,由此可判断①正确;由抛物线的对称轴为,得到,即可判断②;可知时和时的y值相等可判断③正确;由图知时二次函数有最小值,可判断④错误;由抛物线的对称轴为可得,因此,根据图像可判断⑤正确.
【详解】①∵抛物线的开口向上,
∵抛物线与y轴交点在y轴的负半轴上,
由得,,
,
故①正确;
②抛物线的对称轴为,
,
,
,故②正确;
③由抛物线的对称轴为,可知时和时的y值相等.
由图知时,,
∴时,.
即.
故③错误;
④由图知时二次函数有最小值,
,
,
,
故④错误;
⑤由抛物线的对称轴为可得,
,
∴,
当时,.
由图知时
故⑤正确.
综上所述:正确的是①②⑤,有3个,
故选:B.
【点睛】本题主要考查了二次函数的图像与系数的关系,二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.
12.B
【分析】根据抛物线的对称轴、开口方向、与y轴的交点确定a、b、c的正负,即可判定①和②;将点代入抛物线解析式并结合即可判定③;运用根的判别式并结合a、c的正负,判定判别式是否大于零即可判定④;判定点,的对称轴为,然后根据抛物线的对称性即可判定⑤.
【详解】解:抛物线开口向上,与y轴交于负半轴,
,
∵抛物线的对称轴为直线,
∴,即,即②错误;
∴,即①正确,
二次函数图像的一部分与x轴的一个交点坐标为
,即,故③正确;
∵关于x的一元二次方程,,,
∴,,
∴无法判断的正负,即无法确定关于x的一元二次方程的根的情况,故④错误;
∵
∴点,关于直线对称
∵点,均在该二次函数图像上,
∴,即⑤正确;
综上,正确的为①③⑤,共3个
故选:B.
【点睛】本题考查了二次函数的的性质及图像与系数的关系,能够从图像中准确的获取信息是解题的关键.
13.C
【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与轴交点问题逐项分析判断即可.
【详解】解:由图可知,二次函数开口方向向下,与轴正半轴交于一点,
,.
,
.
.
故①正确.
是关于二次函数对称轴对称,
.
在对称轴的左边,在对称轴的右边,如图所示,
.
故②正确.
图象与轴交于点,
,.
.
.
故③正确.
,
.
当时,,
.
,
,
.
故④不正确.
综上所述,正确的有①②③.
故选:C.
【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与轴交点.
14.B
【分析】根据对称轴公式可判断①;当时,,可判断②;根据抛物线的增减性,分两种情况计算可判断③;利用对称点的坐标得到,可以判断④.
【详解】解:∵抛物线(a是常数,,
∴,
故①正确;
当时,,
∴点在抛物线上,
故②正确;
当时,,
当时,,
故③错误;
根据对称点的坐标得到,
,
故④错误.
故选B.
【点睛】本题考查了抛物线的对称性,增减性,熟练掌握抛物线的性质是解题的关键.
15.
【分析】根据题意,可得抛物线对称轴为直线,开口向上,根据已知条件得出点在对称轴的右侧,且,进而得出不等式,解不等式即可求解.
【详解】解:∵,
∴抛物线的对称轴为直线,开口向上,
∵分别位于抛物线对称轴的两侧,
假设点在对称轴的右侧,则,解得,
∴
∴点在点的右侧,与假设矛盾,则点在对称轴的右侧,
∴
解得:
又∵,
∴
∴
解得:
∴,
故答案为:.
【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.
16.
【分析】先判断,再根据二次函数的性质可得:,再利用二次函数的性质求解n的范围即可.
【详解】解:点到轴的距离小于2,
,
点在二次函数的图象上,
,
当时,有最小值为1.
当时,,
的取值范围为.
故答案为:
【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.
17.①②③
【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可以判断③;根据各点与抛物线对称轴的距离大小可以判断④;对称轴可得b=2a,由抛物线过点(1,0),可判断⑤.
【详解】∵抛物线对称轴在y轴的左侧,
∴ab>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,①正确;
∵抛物线经过(1,0),
∴a+b+c=0,②正确.
∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,
∴另一个交点为(﹣3,0),
∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;
∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,
∴y2>y1>y3,④错误.
∵抛物线与x轴的一个交点坐标为(1,0),
∴a+b+c=0,
∵=﹣1,
∴b=2a,
∴3a+c=0,⑤错误.
故答案为:①②③.
【点睛】本题考查了二次函数图像与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.
18.<t<1##0.6【分析】根据A、B关于对称轴x=1对称,可知x1+x2=2,由直线y=m(m为常数)相交于三个不同的点,可得y1=y2=y3=m,求出x3的范围,进而求出t的范围.
【详解】解:由二次函数y=x2﹣2x+3(x<2)可知:图象开口向上,对称轴为x=1,
∴当x=1时函数有最小值为2,x1+x2=2,
由一次函数y=﹣x+(x≥2)可知当x=2时有最大值3,当y=2时x=,
∵直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3),
∴y1=y2=y3=m,2<m<3,
∴2<x3<,
∴t==,
∴<t<1.
故填:<t<1
【点睛】本题考查了二次函数的性质、一次函数的性质、函数值的取值范围等知识点,熟练掌握各知识点,利用数形结合的思想是解答本题的关键.
19.##
【分析】先把函数解析式化为顶点式可得当时,y随x的增大而增大,当时,y随x的增大而减小,然后分两种情况讨论:若;若,即可求解.
【详解】解:,
∴当时,y随x的增大而增大,当时,y随x的增大而减小,
若,当时,y随x的增大而减小,
此时当时,函数值y最小,最小值为,不合题意,
若,当时,函数值y最小,最小值为1,
∴,
解得:或(舍去);
综上所述,a的值为.
故答案为:
【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
20.或
【分析】根据抛物线求出对称轴,轴的交点坐标为,顶点坐标为,直线CD的表达式,分两种情况讨论:当时,当时,利用抛物线的性质可知,当越大,则抛物线的开口越小,即可求解.
【详解】解:抛物线的对称轴为:,当时,,故抛物线与轴的交点坐标为,顶点坐标为,直线CD的表达式,
当时,且抛物线过点时,
,解得(舍去),
当,抛物线与线段只有一个公共点时,
即顶点在直线CD上,则,解得,
当时,且抛物线过点时,
,解得,
当抛物线过点时,
解得,m=-1
由抛物线的性质可知,当越大,则抛物线的开口越小,且抛物线与线段只有一个公共点,
,
综上所述,的取值范围为或,
故答案为或.
【点睛】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.
21.(1)
(2)
【分析】(1)根据二次函数的性质求得对称轴即可求解;
(2)根据题意可得离对称轴更近,,则与的中点在对称轴的右侧,根据对称性求得,进而根据,即可求解.
【详解】(1)解:∵对于,有,
∴抛物线的对称轴为直线,
∵抛物线的对称轴为.
∴;
(2)解:∵当,,
∴,,
∵,,
∴离对称轴更近,,则与的中点在对称轴的右侧,
∴,
即.
【点睛】本题考查了二次函数的性质,熟练掌握二次函数的对称性是解题的关键.
22.(1)①;②当时,
(2)
【分析】(1)①将代入解析式,化为顶点式,即可求解;
②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;
(2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.
【详解】(1)解:①当时,,
∴顶点坐标为.
②∵顶点坐标为.抛物线开口向下,
当时,随增大而增大,
当时,随增大而减小,
∴当时,有最大值7.
又
∴当时取得最小值,最小值;
∴当时,.
(2)∵时,的最大值为2;时,的最大值为3,
∴抛物线的对称轴在轴的右侧,
∴,
∵抛物线开口向下,时,的最大值为2,
∴,
又∵,
∴,
∵,
∴,
∴二次函数的表达式为.
【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.
23.(1)
(2)
(3)或
【分析】(1)将坐标代入解析式,求解待定参数值;
(2)确定抛物线的对称轴,对待定参数分类讨论,分,当时,函数值最小,以及,当时,函数值最小,求得相应的t值即可 得;
(3)由关于对称轴对称得,且A在对称轴左侧,C在对称轴右侧;确定抛物线与y轴交点,此交点关于对称轴的对称点为,结合已知确定出;再分类讨论:A,B都在对称轴左边时,A,B分别在对称轴两侧时,分别列出不等式进行求解即可.
【详解】(1)将代入中,
得,
解得,;
(2)抛物线对称轴为.
若,当时,函数值最小,
,
解得.
,
若,当时,函数值最小,
,
解得(不合题意,舍去)
综上所述.
(3)关于对称轴对称
,且A在对称轴左侧,C在对称轴右侧
抛物线与y轴交点为,抛物线对称轴为直线,
此交点关于对称轴的对称点为
且
,解得.
当A,B都在对称轴左边时,
,
解得,
当A,B分别在对称轴两侧时
到对称轴的距离大于A到对称轴的距离
,
解得
综上所述或.
【点睛】本题考查二次函数图象的性质、极值问题;存在待定参数的情况下,对可能情况作出分类讨论是解题的关键.
24.(1)存在,
(2)①;
【分析】(1)根据定义可知,和谐点都在上,联立两直线解析式即可求解;
(2)①根据题意可知二次函数与相切于点,据此即可求解;
②根据①得到解析式,根据二次函数图象的性质分析即可求解.
【详解】(1)解:∵点的横坐标和纵坐标相等,则称点为和谐点,
∴和谐点都在上,
,
解得,
上的和谐点为;
(2)解:①∵二次函数的图象上有且只有一个和谐点,
∴即有两个相等的实数根,
,
解得①,
将代入得,
,
联立①②,得,
②,
,
其顶点坐标为,则最大值为3,
在时,随的增大而增大,当时,,
根据对称轴可知,当时,,
时,函数的最小值为-1,最大值为3,
根据函数图象可知,当时,函数的最小值为-1,最大值为3,
实数的取值范围为:.
【点睛】本题考查了新定义问题,两直线交点问题,一次函数与抛物线交点问题,待定系数法求二次函数解析式,二次函数的性质,理解新定义是解题的关键.
答案第1页,共2页
答案第1页,共2页