专题22.33 实际问题与二次函数(直通中考)(基础练)
一、单选题
(2023·浙江·统考中考真题)
1.一个球从地面竖直向上弹起时的速度为10米/秒,经过(秒)时球距离地面的高度(米)适用公式,那么球弹起后又回到地面所花的时间(秒)是( )
A.5 B.10 C.1 D.2
(2010·广西南宁·中考真题)
2.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t﹣5t2,那么小球从抛出至回落到地面所需要的时间是( )
A.6s B.4s C.3s D.2s
(2023·天津·统考中考真题)
3.如图,要围一个矩形菜园,共中一边是墙,且的长不能超过,其余的三边用篱笆,且这三边的和为.有下列结论:
①的长可以为;
②的长有两个不同的值满足菜园面积为;
③菜园面积的最大值为.
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
(2023·福建·统考中考真题)
4.根据福建省统计局数据,福建省年的地区生产总值为亿元,年的地区生产总值为亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )
A. B.
C. D.
(2019·山东临沂·统考中考真题)
5.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④ B.①② C.②③④ D.②③
(2007·江苏扬州·中考真题)
6.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
A. B. C. D.
(2019·江苏·中考真题)
7.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是( )
A.18m2 B.m2 C.m2 D.m2
(2019·台湾·统考中考真题)
8.如图,坐标平面上有一顶点为的抛物线,此抛物线与方程式的图形交于、两点,为正三角形.若点坐标为,则此抛物线与轴的交点坐标为何?( )
A. B. C. D.
(2011·青海西宁·中考真题)
9.西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是( )
A.y=-(x-)2+3 B.y=-3(x+)2+3
C.y=-12(x-)2+3 D.y=-12(x+)2+3
(2020·湖南长沙·统考中考真题)
10.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
二、填空题
(2022·江苏南通·统考中考真题)
11.根据物理学规律,如果不考虑空气阻力,以的速度将小球沿与地面成角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是,当飞行时间t为 s时,小球达到最高点.
(2022·甘肃武威·统考中考真题)
12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间 s.
(2020·江苏连云港·中考真题)
13.加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率与加工时间(单位:)满足函数表达式,则最佳加工时间为 .
(2016·广东梅州·中考真题)
14.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为 .
(2023·山东滨州·统考中考真题)
15.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为 .
(2023·湖北宜昌·统考中考真题)
16.如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的距离 m.
(2023·辽宁沈阳·统考中考真题)
17.如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边 时,羊圈的面积最大.
(2022·江苏连云港·统考中考真题)
18.如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是 .
三、解答题
(2023·辽宁锦州·统考中考真题)
19.端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?
(2022·河南·统考中考真题)
20.小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
(2022·山东滨州·统考中考真题)
21.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
(1)求y关于x的一次函数解析式;
(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
(2022·江苏淮安·统考中考真题)
22.端午节前夕,某超市从厂家分两次购进、两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进品牌粽子100袋和品牌粽子150袋,总费用为7000元;第二次购进品牌粽子180袋和品牌粽子120袋,总费用为8100元.
(1)求、两种品牌粽子每袋的进价各是多少元;
(2)当品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当品牌粽子每袋的销售价降低多少元时,每天售出品牌粽子所获得的利润最大?最大利润是多少元?
(2022·陕西·统考中考真题)
23.现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.
(1)求满足设计要求的抛物线的函数表达式;
(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.
(2022·辽宁沈阳·统考中考真题)
24.如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?
(2)矩形框架ABCD面积最大值为______平方厘米.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【分析】根据球弹起后又回到地面时,得到,解方程即可得到答案.
【详解】解:球弹起后又回到地面时,即,
解得(不合题意,舍去),,
∴球弹起后又回到地面所花的时间(秒)是2,
故选:D
【点睛】此题考查了求二次函数自变量的值,读懂题意,得到方程是解题的关键.
2.A
【分析】根据题意可得,当﹣5t2+30t=0时,小球从抛出至回落到地面,解出即可求解.
【详解】解:由小球高度h与运动时间t的关系式h=30t﹣5t2.
令h=0,有﹣5t2+30t=0,
解得:t1=0(舍去),t2=6
∴小球从抛出至回落到地面所需要的时间是6秒.
故选:A.
【点睛】本题主要考查了二次函数的应用,明确题意,得到当﹣5t2+30t=0时,小球从抛出至回落到地面是解题的关键.
3.C
【分析】设的长为,矩形的面积为,则的长为,根据矩形的面积公式列二次函数解析式,再分别根据的长不能超过,二次函数的最值,解一元二次方程求解即可.
【详解】设的长为,矩形的面积为,则的长为,由题意得
,
其中,即,
①的长不可以为,原说法错误;
③菜园面积的最大值为,原说法正确;
②当时,解得或,
∴的长有两个不同的值满足菜园面积为,说法正确;
综上,正确结论的个数是2个,
故选:C.
【点睛】本题考查了二次函数的应用,解一元二次方程,准确理解题意,列出二次函数解析式是解题的关键.
4.B
【分析】设这两年福建省地区生产总值的年平均增长率为x,根据题意列出一元二次方程即可求解.
【详解】设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程
,
故选:B.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
5.D
【分析】根据函数的图象中的信息判断即可.
【详解】①由图象知小球在空中达到的最大高度是;故①错误;
②小球抛出3秒后,速度越来越快;故②正确;
③小球抛出3秒时达到最高点即速度为0;故③正确;
④设函数解析式为:,
把代入得,解得,
∴函数解析式为,
把代入解析式得,,
解得:或,
∴小球的高度时,或,故④错误;
故选D.
【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意
6.B
【详解】解:h=-t2+20t+1=-(t-4)2+41
-<0
∴这个二次函数图象开口向下,
∴当t=4时,升到最高点,
故选B.
7.C
【分析】过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则
∠BCE=∠BCD-∠DCE=30°,BC=12-x,由直角三角形的,性质得出得出,又梯形面积公式求出梯形ABCD的面积S与x之间的函数关系式,根据二次函数的性质求解.
【详解】解:如图,过点C作CE⊥AB于E,
则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°, 则∠BCE=∠BCD-∠DCE=30°,BC=12-x,
在Rt△CBE中,∵∠CEB=90°,
∴梯形ABCD面积
∴当x=4时,S最大=24.
即CD长为4 m时,使梯形储料场ABCD的面积最大为24 m2;
故选C.
【点睛】此题考查了梯性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键
8.B
【分析】设,,,可知,再由等边三角形的性质可知,设抛物线解析式,将点代入解析式即可求,进而求解.
【详解】解:设,,
点坐标为,
,
为正三角形,
, ,
设抛物线解析式,
,
,
,
当时,;
故选B.
【点睛】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.
9.C
【分析】根据二次函数的图象,喷水管喷水的最大高度为3米,此时喷水水平距离为米,由此得到顶点坐标为( ,3),所以设抛物线的解析式为y=a(x- )2+3,而抛物线还经过(0,0),由此即可确定抛物线的解析式.
【详解】解:∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,
∴顶点坐标为(,3),
设抛物线的解析式为y=a(x-)2+3,
而抛物线还经过(0,0),
∴0=a(0-)2+3,
∴a=-12,
∴抛物线的解析式为y=-12(x-)2+3.
故选C.
10.C
【分析】将图中三个坐标代入函数关系式解出a和b,再利用对称轴公式求出即可.
【详解】将(3,0.8)(4,0.9)(5,0.6)代入得:
②-①和③-②得
⑤-④得,解得a=﹣0.2.
将a=﹣0.2.代入④可得b=1.5.
对称轴=.
故选C.
【点睛】本题考查二次函数的三点式,关键在于利用待定系数法求解,且本题只需求出a和b即可得出答案.
11.2
【分析】将函数关系式转化为顶点式即可求解.
【详解】根据题意,有,
当时,有最大值.
故答案为:2.
【点睛】本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.
12.2
【分析】把一般式化为顶点式,即可得到答案.
【详解】解:∵h=-5t2+20t=-5(t-2)2+20,
且-5<0,
∴当t=2时,h取最大值20,
故答案为:2.
【点睛】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
13.3.75
【分析】根据二次函数的对称轴公式直接计算即可.
【详解】解:∵的对称轴为(min),
故:最佳加工时间为3.75min,
故答案为:3.75.
【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
14.(1+,2)或(1﹣,2).
【详解】解:∵△PCD是以CD为底的等腰三角形,
∴点P在线段CD的垂直平分线上,
如图,过P作PE⊥y轴于点E,则E为线段CD的中点,
∵抛物线与y轴交于点C,
∴C(0,3),且D(0,1),
∴E点坐标为(0,2),
∴P点纵坐标为2,在中,令y=2,可得,解得x=,∴P点坐标为(,2)或(,2),故答案为(,2)或(,2).
【点睛】本题考查了等腰三角形的性质,垂直平分线的性质,抛物线与坐标轴的交点坐标,以及抛物线上点的坐标,解决此题的关键是和合理的推理正确的计算.
15.##2.25米##米##m##米##m
【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系,设抛物线的解析式为,将代入求得a值,则时得的y值即为水管的长.
【详解】解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系.
由于在距池中心的水平距离为时达到最高,高度为,
则设抛物线的解析式为:
,
代入求得:.
将值代入得到抛物线的解析式为:,
令,则.
故水管长度为.
故答案为:.
【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.
16.10
【分析】令,则,再解方程,结合函数图象可得答案.
【详解】解:令,则,
解得:,,
∴,
故答案为:.
【点睛】本题考查的是二次函数的实际应用,理解题意令求解方程的解是解本题的关键.
17.15
【分析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.
【详解】解:设为,面积为,
由题意可得:,
当时,取得最大值,
即时,羊圈的面积最大,
故答案为:.
【点睛】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.
18.4
【分析】将代入中可求出x,结合图形可知,即可求出OH.
【详解】解:当时,,解得:或,
结合图形可知:,
故答案为:4
【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
19.(1)
(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元
【分析】(1)直接应用待定系数法即可求出一次函数解析式;
(2)根据题意列出获日销售利润与x的函数关系式,然后利用二次函数的性质即可求解.
【详解】(1)解:设一次函数的解析式为,
将,代入得:
,
解得:,
∴求y与x之间的函数关系式为;
(2)解:设日销售利润为w,
由题意得:
,
∴当时,w有最大值,最大值为810,
∴当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.
【点睛】本题考查了二次函数的应用,二次函数的最值,理解掌握题意,正确的找出题目中的等量关系,列出方程或函数关系式是解题的关键.
20.(1)
(2)2或6m
【分析】(1)根据顶点,设抛物线的表达式为,将点,代入即可求解;
(2)将代入(1)的解析式,求得的值,进而求与点的距离即可求解.
【详解】(1)解:根据题意可知抛物线的顶点为,
设抛物线的解析式为,
将点代入,得,
解得,
抛物线的解析式为,
(2)由,令,
得,
解得,
爸爸站在水柱正下方,且距喷水头P水平距离3m,
当她的头顶恰好接触到水柱时,她与爸爸的水平距离为(m),或(m).
【点睛】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.
21.(1)
(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元
【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
【详解】(1)解:设,把,和,代入可得
,
解得,
则;
(2)解:每月获得利润
.
∵,
∴当时,P有最大值,最大值为3630.
答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
22.(1)种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元
(2)当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元
【分析】(1)根据已知数量关系列二元一次方程组,即可求解;
(2)设品牌粽子每袋的销售价降低元,利润为元,列出关于的函数关系式,求出函数的最值即可.
【详解】(1)解:设种品牌粽子每袋的进价是元,种品牌粽子每袋的进价是元,
根据题意得,,
解得,
故种品牌粽子每袋的进价是25元,种品牌粽子每袋的进价是30元;
(2)解:设品牌粽子每袋的销售价降低元,利润为元,
根据题意得,
,
∵,
∴当品牌粽子每袋的销售价降低10元时,每天售出品牌粽子所获得的利润最大,最大利润是980元.
【点睛】本题考查二次函数和二元一次方程的实际应用,根据已知数量关系列出函数解析式和二元一次方程组是解题的关键.
23.(1)
(2)
【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;
(2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题.
【详解】(1)依题意,顶点,
设抛物线的函数表达式为,
将代入,得.解之,得.
∴抛物线的函数表达式为.
(2)令,得.
解之,得.
∴.
【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.
24.(1)AB的长为8厘米或12厘米.
(2)150
【分析】(1)设AB的长为x厘米,则有厘米,然后根据题意可得方程,进而求解即可;
(2)由(1)可设矩形框架ABCD的面积为S,则有,然后根据二次函数的性质可进行求解.
【详解】(1)解:设AB的长为x厘米,则有厘米,由题意得:
,
整理得:,
解得:,
∵,
∴,
∴都符合题意,
答:AB的长为8厘米或12厘米.
(2)解:由(1)可设矩形框架ABCD的面积为S平方厘米,则有:
,
∵,且,
∴当时,S有最大值,即为;
故答案为:150.
【点睛】本题主要考查一元二次方程及二次函数的应用,解题的关键是找准题干中的等量关系.
答案第1页,共2页
答案第1页,共2页