北师大版数学九年级上册 第六章 反比例函数习题课件(2份打包)

文档属性

名称 北师大版数学九年级上册 第六章 反比例函数习题课件(2份打包)
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-10-21 15:13:06

文档简介

(共11张PPT)
第六章 反比例函数
第41课时 反比例函数
A组(基础过关)
1. 下列函数中,y是x的反比例函数的是( A )
C. y=3x
A
2. 已知y是x的反比例函数,且x=2时,y=3,则该函数的表达式是( C )
A. y=6x
C

x≠0 
(1)求这个函数的比例系数;

(2)当x=-10时,求函数y的值;

(3)当y=6时,求自变量x的值.


-1 
(1)底边为5 cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;

(2)某村有耕地面积200 hm2,人均占有耕地面积y(hm2/人)随人口数量x的变化而变化.

C组(探究拓展)
7. (创新改编)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.
(1)求y关于x的函数表达式;

(2)当x=3时,求y的值.

谢 谢!






3.在函数y=二中,自变量x的取值范围是
4.已知反比例函数y=-
2x
解:
2x
°。这个函数的比例系数为
解:(3)当y=6时,得一3=
2x
解得x=
B组(能力提升)
5.已知函数y=(m一1)xm2-2是反比例函数,则m的
值为
6.写出下列问题中两个变量之间的函数关系式,并判断
其是否为反比例函数.如果是,指出该函数的比例系数.
解:(1)根据三角形的面积公式,得y=×5×x(x>
整理,得y
它不是反比例函数
解:(2)根据题意,得y=2
它是反比例函数,该函数的比例系数为200
解:(1)设=,=k2x(k1≠0,k2≠0)
k2x.,当x=2时,y1=4,y=2,
解得
y关于x的函数表达式为
2k2(共16张PPT)
第六章 反比例函数
第43课时 反比例函数的图象与性质(二)
A组(基础过关)

A. k<6 B. k>-6
C. k>6 D. k<-6
C

A. y1<y2<0 B. 0<y1<y2
C. y2<y1<0 D. 0<y2<y1
A

图SF6-43-1
A. 图① B. 图②
C. 图③ D. 图④
B



4 
图SF6-43-2
B组(能力提升)

图SF6-43-3
3 

图SF6-43-4
(1)求k和m的值;

图SF6-43-4
(2)当x≥8时,求函数值y的取值范围.

图SF6-43-4

图SF6-43-5
(1)求一次函数和反比例函数的解析式;

图SF6-43-5
(2)求△ABC的面积.

图SF6-43-5

图SF6-43-6
(1)求k,a的值;

图SF6-43-6
∴3a2=12.
解得a1=2,a2=-2(不合题意,舍去).
∴k的值为12,a的值为2.
(2)连接BC,OC,求△OBC的面积.

图SF6-43-6
答图SF6-43-1
谢 谢!






若反比例函数y=6*的图象在其所在的每一象限内,
y随x的增大而增大,则k的取值范围是
3.若图SF6一43一1中各图的反比例函数的表达式均为y
则阴影面积为2的是
.已知反比例函数一三
1-2m
m为常数),当x<0时,y
随x的减小而增大,则m的取值范围是
5.如图SF6一43一2,点A,B是双曲线
v-
3的图象上的点,分别过A,B两点
X
向x轴、y轴作垂线段.若S阴影=1,则S
S=
6.(2022乐山)如图SF6一43一3, ABCD的顶点A在x
轴上,皮D在=兰K0)上,
且ADLx轴,CA的延长
线交轴于点E.若S△ABE
则k一
.如图SF6一43一4,在平面直角坐标系中,O为坐标原
点.已知反比例函数y=(>0)的图象经过点A(2,
),过点A作ABLx轴于点B,且△AOB的面积为5.
解:(1)
4(2
OB=2,AB=m
一20B·HB=义2Xm=5.
=5.。点4的坐标为(2,5)
把4(2,5)代入y=,
得k=10
解:(2)由(1)知,反比例函数的表达
式为y=0.当x=8时,
°,°k=10
当x>0时,y随x的增大而减小,且y>0.

当x≥8时,y的取值苑围为0