22.1二次函数的图像和性质
一、单选题
1.抛物线的对称轴是( )
A. B. C. D.
2.若将抛物线先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )
A. B.
C. D.
3.在平面直角坐标系中,将抛物线先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为( )
A. B.
C. D.
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )
A.a>0 B.c<0
C.3是方程ax2+bx+c=0的一个根 D.当x﹥1时,y随x的增大而增大
5.已知二次函数y= -(x+1)2+1 的图象上有点A(﹣2,y1),B(1,y2),C(2,y3),则y1、y2、y3的大小关系为( )
A.y16.已知拋物线(a,b,c为常数,)经过点,.有下列结论:①;②;③方程有两个不相等的实数根.其中,正确结论的个数为( )
A.0 B.1 C.2 D.3
7.如图,抛物线y=ax2+bx+c的对称轴是x=-1.且过点(,0),有下列结论:
①abc>0;②a-2b+4c=0;③25a-10b+4c=0;④3b+2c>0;⑤a-bm≥(am-b);其中所有正确的结论有( )个.
A.2个 B.3个 C.4个 D.5个
8.将抛物线依次进行以下三种变换:①沿y轴向下平移3个单位;②横坐标变为原来的两倍,纵坐标不变;③横坐标不变,纵坐标变为原来的两倍.则变换后的抛物线表达式为( )
A. B. C. D.
9.抛物线与直线,,,围成的正方形有公共点,则实数a的取值范围是( )
A. B. C. D.
10.如图,平行于x轴的直线AC分别交抛物线与于B,C两点,过点C作y轴的平行线交于点D,直线交于点E,则的值是( )
A. B.
C. D.
二、填空题
11.点,是抛物线上的两点,则 .(填,或)
12.抛物线向右平移一个单位后,得到的解析式为 .
13.二次函数y=x2+4x+a图象上的最低点的横坐标为 .
14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 .
15.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是 .
16.如图,抛物线与直线交于,两点,将抛物线沿射线方向平移个单位.在整个平移过程中,抛物线与直线交于点,则点经过的路程为 .
三、解答题
17.抛物线的图象如下,求这条抛物线的解析式.(结果化成一般式)
18.如图,抛物线,点Q为顶点.
(1)无论a为何值,抛物线L总过一个定点为________;
(2)若抛物线的对称轴为直线.
①求该抛物线L的表达式和点Q的坐标;
②将抛物线L向下平移k()个单位长度,使点Q落在点A处,平移后的抛物线与y轴交于点B.若,求k的值;
(3)当时,点为抛物线上一点,点M到y轴的距离不超过2,直接写出n的取值范围.
19.已知二次函数的图象为抛物线C.
(1)抛物线C顶点坐标为 ;
(2)当时,求该二次函数的函数值y的取值范围;
(3)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,求出抛物线的解析式.
20.已知二次函数的图象经过点,对称轴是直线.
(1)求m,n的值;
(2)如图,一次函数的图象经过点P,与二次函数的图象相交于另一点B,请求出点B的坐标,并观察图象直接写出的x的取值范围.
参考答案:
1.D
2.A
3.A
4.C
5.C
6.B
7.A
8.B
9.D
10.A
11.<
12.
13.﹣2.
14.
15.①②③⑤
16.
17.
18.(1)(2)①,;②(3)
19.(1)(2)(3)
20.(1);(2)B(2,6);或