2008-4-5
27.1图形的相似(第1课时)
教学目标
1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.
2.能根据相似比进行计算.
3. 通过与相似多边形有关概念的类比,得出相似三角形的定义, 领会特殊与一般的关系.
4.能根据定义判断两个多边形是否相似,训练学生的判断能力.
5.能根据相似比求长度和角度,培养学生的运用能力.
6. 通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
重点:相似三角形的初步认识.
教学过程
1、观察
共同特征:形状相同,大小不同.
相似图形:我们把这种形状相同的图形说成是相似图形
问题1:两个图形相似,其中一个图形可以看作由另一个图形
______或________得到,
问题2:举出现实生活中的几个相似图形的例子
例如,放映电影时,投在屏幕上的画面就是胶片上的图形的放大;
实际的建筑物和它的模型是相似的;
用复印机把一个图形放大或缩小所所得的图形,也都与原来的图形相似.
问题3:尝试着画几个相似图形?(多媒体出示)
2、教材“观察”
图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(多媒体出示)
相似 不相似 不相似
课堂练习:教材p37页1、2。
教学后记:
27.1图形的相似(第2课时)
教学目标:1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.
2.能根据相似比进行计算.
3.能根据定义判断两个多边形是否相似,训练学生的判断能力.
4.能根据相似比求长度和角度,培养学生的运用能力.
重难点:根据定义求线段长或角的度数。
教学过程:
准备活动:
阅读理解:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两条线段的比相等,如(即ab=cd),我们就说这四条线段是成比例线段,简称比例线段.
一、复习旧知
相似多边形有关概念
二、引入新知
例题.如图(多媒体出示),四边形ABCD和EFGH相似,求∠1、∠2的度数和EF的长度.
解:四边形ABCD和EFGH相似,它们的对应角相等。
∴∠1=∠C=83°,
∠A=∠E=118°
在四边形ABCD中,
∠2=360°-(78°+83°+118°)=118°
四边形ABCD和EFGH相似,它们的对应边成比例。
由此得:
,即,
解得,x=28(cm).
三巩固练习
如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.
四、相似三角形的定义及记法
1、因为相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义给出.
三角对应相等,三边对应成比例的两个三角形叫做相似三角形.
如△ABC与△DEF相似,多媒体出示,
记作△ABC ∽△ DEF
其中对应顶点要写在对应位置,如A与 D、B与 E、C与 F相对应.AB∶ DE等于相似比,相似比为K.
2、想一想:如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?
由前面相似多边形的性质可知,对应角应相等,对应边应成比例.
3、议一议:
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
五、小结:
请学生谈一谈自己的收获以及自己对本节课的体会;
六、作业
1、看书P39-40
2、教材P40复习巩固1、3
教学后记:
27.2.1相似三角形的判定(一)
〔教学目标〕
1. 了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系,体验事物间特殊与一般的关系。
3. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕
重点:两个三角形相似的判定引例﹑判定方法1
难点:探究判定引例﹑判定方法1的过程
〔教学设计〕
教学过程 设计意图说明
新课引入:复习相似多边形的定义及相似多边形相似比的定义↓相似三角形的定义及相似三角形相似比的定义回顾全等三角形的概念及判定方法(SSS)↓相似三角形的概念及判定相似三角形的思路。 从相似多边形的概念及全等三角形的概念两个以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊﹑特殊到一般的关系。
提出问题:如图27·2-1(多媒体出示),在 ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E , ADE与 ABC有什么关系?
分析:观察27·2-1易知AD=,AE=,∠A=∠A,∠ADE=∠ABC,∠AED=∠ACB,只需引导学生证得DE=即可,学生不难想到过E作EF∥AB。↓ ADE∽ ABC,相似比为。延伸问题:改变点D在AB上的位置,先让学生猜想 ADE与 ABC仍相似,然后再用几何画板演示验证。↓归纳:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 通过观察特殊平行条件(经过三角形一边的中点平行于另一边)下两三角形的相似关系,引导学生思考一般平行条件(平行于三角形一边的直线和其他两边相交)下两三角形的相似关系,进一步体会事物间特殊到一般的关系。通过几何画板演示,培养学生的实验探究意识。
探究方法:探究1(多媒体出示)在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。(学生小组交流)在学生小组交流的基础上引导学生思考证明探究所得结论的途径。分析:作A1D=AB,过D作DE∥B1C1,交A1C1于点E A1DE∽ A1B1C1。用几何画板演示 ABC平移至 A1DE的过程 A1D=AB,A1E=AC,DE=BC A1DE≌ ABC ABC∽ A1B1C1↓归纳:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。↓若则 ABC∽ A1B1C1 学生通过作图,动手度量三角形的各边长及三角形的角,在动手实践中探究几何结论成立与否,加深了学生对定理的重发现体验。通过几何画板演示让学生从中体会到把不熟悉的几何问题(如果两个三角形的三组对应边的比相等,那么这两个三角形是否相似?)转化为熟悉的几何问题(平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似)的过程。 对几何定理作文字语言﹑图形语言﹑符号语言的三维注解有利于学生进行认知重构,以全方位地准确把握定理的内容。突出几何定理的图形语言﹑符号语言可以帮助学生完成几何定理的建模。
课堂小结:说说你在本节课的收获。 让学生及时回顾整理本节课所学的知识。
作业:
教学后记:
27.2.1相似三角形的判定(二)
〔教学目标〕
4. 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
5. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系,体验事物间特殊与一般的关系。
6. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕
重点:两个三角形相似的判定方法2及其应用
难点:探究两个三角形相似判定方法2的过程
〔教学设计〕
教学过程 设计意图说明
新课引入:复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系: SSS↓如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)回顾探究判定引例﹑判定方法1的过程↓探究两个三角形相似判定方法2的途径 从回顾探究判定引例﹑判定方法1的过程及复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系两个角度来以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊﹑特殊到一般的关系。
提出问题:利用刻度尺和量角器画 ABC与 A1B1C1,使∠A=∠A1,和都等于给定的值k,量出它们的第三组对应边BC和B1C1的长,它们的比等于k吗?另外两组对应角∠B与∠B1,∠C与∠C1是否相等? (学生独立操作并判断)↓分析:学生通过度量,不难发现这两个三角形的第三组对应边BC和B1C1的比都等于k,另外两组对应角∠B=∠B1,∠C=∠C1。 延伸问题:改变∠A或k值的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。)探究方法:探究2(多媒体出示)改变∠A或k值的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生学习如何在动态变化中捕捉不变因素。)↓归纳:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(定理的证明由学生独立完成)若∠A=∠A1,==k则 ABC∽ A1B1C1辨析:对于 ABC与 A1B1C1,如果=,∠B=∠B1,这两个三角形相似吗?试着画画看。(让学生先独立思考,再进行小组交流,寻找问题的所在,并集中展示反例。) 学生通过作图,动手度量三角形的各边的比例以及三角形的各个角的大小,从尺规实验的角度探索命题成立的可能性,丰富学生的尺规作图与尺规探究经验。改变∠A或k值的大小再作尺规探究,可以培养学生在变化中捕捉不变因素的能力。通过几何画板演示验证,培养学生学习在图形的动态变化中探究不变因素的能力。对几何定理作文字语言﹑图形语言﹑符号语言的三维注解有利于学生进行认知重构,以全方位地准确把握定理的内容。通过辨析,使学生对两个三角形相似判定方法2的判定条件- -“并且相应的夹角相等”具有较深刻的认识,培养学生严谨的思维习惯。
应用新知:例1:根据下列条件,判断 ABC与 A1B1C1是否相似,并说明理由:(1)∠A=1200,AB=7cm,AC=14cm, ∠A1=1200,A1B1= 3cm,A1C1=6cm。(2)∠B=1200,AB=2cm,AC=6cm, ∠B1=1200,A1B1= 8cm,A1C1=24cm。分析: (1)==,∠A=∠A1=1200 ABC∽ A1B1C1(2)==,∠B=∠B1=1200但∠B与∠B1不是AB ﹑AC﹑ A1B1 ﹑A1C1的夹角,所以 ABC与 A1B1C1不相似。 让学生了解运用相似三角形的判定方法2进行判定三角形相似的一般思路,体会这与运用全等三角形的判定方法SAS进行相关证明与计算的雷同性。让学生注意到:两个三角形相似判定方法2的判定条件“角相等”必须是“夹角相等”。
课堂小结:说说你在本节课的收获。
作业: 让学生及时回顾整理本节课所学的知识。
教学后记:
27.2.1相似三角形的判定(三)
〔教学目标〕
7. 掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
8. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法3与全等三角形判定方法(AAS﹑ASA)的区别与联系,体验事物间特殊与一般的关系。
9. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕
重点:两个三角形相似的判定方法3及其应用
难点:探究两个三角形相似判定方法3的过程
〔教学设计〕
教学过程 设计意图说明
新课引入:复习两个三角形相似的判定方法1﹑2与全等三角形判定方法(SSS﹑SAS)的区别与联系: SSS ↓如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)SAS↓如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(相似的判定方法2) 从复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)及两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系来以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊﹑特殊到一般的关系。
提出问题: 观察两副三角尺,其中同样角度(300与600,或450与450)的两个三角尺大小可能不同,但它们看起来是相似的。↓如果两个三角形有两组角对应相等,它们一定相似吗?延伸问题:作 ABC与 A1B1C1,使得∠A=∠A1,∠B=∠B1,这时它们的第三角满足∠C=∠C1吗?分别度量这两个三角形的边长,计算﹑﹑,你有什么发现?(学生独立操作并判断)↓分析:学生通过度量,不难发现这两个三角形的第三角满足∠C=∠C1,==。↓分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。) 通过观察同样角度的两副三角尺,可以发现:两个三角尺大小可能不同,但它们的形状相同。学生从实物的比较中容易直观地得到:如果两个三角形有两组角对应相等,它们很可能相似。作图并动手进行尺规实验来探索命题成立的可能性,让学生经历定理的重发现过程,有助于对定理的理解。 让学生进行协同式小组合作可以提高实验的效率,并培养学生的合作能力。
探究方法:探究3(多媒体出示)分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生观察在动态变化中存在的不变因素。)↓归纳:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(定理的证明由学生独立完成) 若∠A=∠A1,∠B=∠B1则 ABC∽ A1B1C1 把学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究结合起来,丰富学生的探究体验,帮助学生深入理解定理的内涵。对几何定理作文字语言﹑图形语言﹑符号语言的三维注解有利于学生进行认知重构,以全方位地准确把握定理的内容。
应用新知:如图27·2-7(多媒体出示),弦AB和CD相交于⊙O内一点P,求证:PA·PB=PC·PD。分析:欲证PA·PB=PC·PD,只需,欲证只需 PAC∽ PDB,欲证 PAC∽ PDB,只需∠A=∠D,∠C=∠B。 让学生了解运用相似三角形的判定方法3进行判定三角形相似的一般思路,体会这与运用全等三角形的判定方法AAS﹑ASA进行相关证明与计算的雷同性。
课堂小结:说说你在本节课的收获。 让学生及时回顾整理本节课所学的知识。
作业:
教学后记:
27.2.2相似三角形应用举例
〔教学目标〕
1.让学生学会运用两个三角形相似解决实际问题。
2.培养学生的观察﹑归纳﹑建模﹑应用能力。
3.让学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
〔教学重点与难点〕
重点:运用两个三角形相似解决实际问题
难点:在实际问题中建立数学模型
〔教学设计〕
教学过程 设计意图说明
新课引入:复习相似三角形的定义及相似三角形相似比的定义回顾相似三角形的概念及判定方法 以旧引新,帮助学生建立新旧知识间的联系。
提出问题: 利用三角形的相似,如何解决一些不能直接测量的物体的长度的问题?(学生小组讨论)↓ “相似三角形对应边的比相等”四条对应边中若已知三条则可求第四条。一试牛刀: 例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。 如图27.2-8(多媒体出示),如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO。分析:BF∥ED∠BAO=∠EDF 又∠AOB=∠DFE=900 ABO∽ DEF二试牛刀:例4:如图27.2-9(多媒体出示),为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R。如果测得QS=45 m,ST=90 m,QR=60 m,求河的宽度PQ。分析:∠PQR=∠PST=900,∠P=∠P PQR∽ PST,即,,。解得PQ=90三试牛刀:例5(多媒体出示):已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?分析:AB∥CD, AFH∽ CFK。,即,解得FH=8。 让学生了解:利用三角形的相似可以解决一些不能直接测量的物体的长度的问题。通过解决“泰勒斯测量金字塔的高度”问题,培养学生学习数学的兴趣,让学生在浓厚的数学文化熏陶中探究解决问题的方法。让学生在解决实际问题的过程中学会建立数学模型,通过建模培养学生的归纳能力。数学建模的关键是把生活中的实际问题转化为数学问题,转化的方法之一是画数学示意图,在画图的过程中可以逐渐明问题中的数量关系与位置关系,进而形成解题思路。
课堂小结:说说你在本节课的收获。 让学生及时回顾整理本节课所学的知识。
作业: 分层次布置作业,让不同的学生在本节课中都有收获。
教学后记:
27.2.3相似三角形的周长与面积
〔教学目标〕
1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题。
3.探索相似多边形周长的比等于相似比、面积比等于相似比的平方,体验化归思想。
〔教学重点与难点〕
重点:理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难点:探索相似多边形周长的比等于相似比、面积比等于相似比的平方。
〔教学设计〕
教学过程 设计意图说明
新课引入:1.回顾相似三角形的概念及判定方法。2.复习相似多边形的定义及相似多边形对应边、对应角的性质。 以旧引新,帮助学生建立新旧知识间的联系。
提出问题: 如果两个三角形相似,它们的周长之间什么关系?两个相似多边形呢?(学生小组讨论) ↓ ABC∽ A1B1C1,相似比为kAB=kA1B1,BC=kB1C1,CA=kC1A1相似三角形周长的比等于相似比相似多边形周长的比等于相似比延伸问题: 探究:如图27.2-11(1)(多媒体出示), ABC∽ A1B1C1,相似比为k1 ,它们的面积比是多少?
(1)
(2)图27.2-11分析:如图27.2-11(1),分别作出 ABC和 A1B1C1的高AD和A1D1。∠ADB=∠A1D1B1=900又∠B=∠B1 ABD∽ A1B1D1=k12相似三角形面积比等于相似比的平方(2)如图27.2-11(2)(多媒体出示),四边形ABCD相似于四边形A1B1C1D1,相似比为k2,它们的面积比是多少?分析: k22 k22相似多边形面积比等于相似比的平方 应用新知:例6:如图27.2-12 (多媒体出示) ,在 ABC和 DEF中,AB=2DE,AC=2DF,∠A=∠D, ABC的周长是24,面积是48,求 DEF的周长和面积。图27.2-12分析: ABC和 DEF中,AB=2DE,AC=2DF又∠A=∠D ABC∽ DEF,相似比为 DEF的周长=24=12,面积=248=12。 让学生经历从特殊到一般的过程,体会有限数学归纳法的魅力,学生以小组讨论的形式开展学习有利于丰富学生的探究经验。让学生经历从“相似三角形周长的比与相似比的关系到相似三角形面积比与相似比的关系”的过程,体会它们之间的形式雷同性与认知结构雷同性。让学生再次经历从特殊到一般的过程,进一步体验有限数学归纳法的魅力。让学生了解运用“相似三角形周长的比等于相似比、面积比等于相似比的平方”的常见解题思路。
课堂小节:让学生谈谈你在本节课的收获 让学生及时回顾整理本节课所学的知识。
作业:
教学后记:
PAGE