一-集合
1. 集合中元素具有确定性、无序性、互异性.
2. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B. 如果.
[注]:①Z= {整数}(√) Z ={全体整数} (×)
②已知集合S 中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N; A=,则CsA= {0})
③ 空集的补集是全集.
④若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB = ).
3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.
[注]:①对方程组解的集合应是点集.例: 解的集合{(2,1)}.
②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)
4. ①n个元素的子集有2n个. ②n个元素的真子集有2n -1个. ③n个元素的非空真子集有2n-2个.
5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.
②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.
例:①若应是真命题.
解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真.
② .
解:逆否:x + y =3x = 1或y = 2.
,故是的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
例:若.
1.研究集合问题,一定要抓住集合的代表元素,如:与及
2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;
3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;
4.判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;
5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;
6.(1)含n个元素的集合的子集个数为,真子集(非空子集)个数为-1;
(2) (3)
二-函数
1. 函数的三要素:定义域,值域,对应法则.
2. 函数的单调区间可以是整个定义域,也可以是定义域的一部分. 对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在上为减函数.
3. 反函数定义:只有满足,函数才有反函数. 例:无反函数.
函数的反函数记为,习惯上记为. 在同一坐标系,函数与它的反函数的图象关于对称.
4. ⑴单调函数必有反函数,但并非反函数存在时一定是单调的.因此,所有偶函数不存在反函数.
⑵如果一个函数有反函数且为奇函数,那么它的反函数也为奇函数.
⑶设函数y = f(x)定义域,值域分别为X、Y. 如果y = f(x)在X上是增(减)函数,那么反函数在Y上一定是增(减)函数,即互为反函数的两个函数增减性相同.
5. 指数函数:(),定义域R,值域为().
⑴①当,指数函数:在定义域上为增函数;
②当,指数函数:在定义域上为减函数.
⑵当时,的值越大,越靠近轴;当时,则相反.
6. 对数函数:如果()的次幂等于,就是,数就叫做以为底的的对数,记作(,负数和零没有对数);其中叫底数,叫真数.
⑴对数运算:
(以上)
注⑴:当时,.
⑵:当时,取“+”,当是偶数时且时,,而,故取“—”.
例如:中x>0而中x∈R).
⑵()与互为反函数.
当时,的值越大,越靠近轴;当时,则相反.
7. 奇函数,偶函数:⑴偶函数:
设()为偶函数上一点,则()也是图象上一点.
偶函数的判定:两个条件同时满足
①定义域一定要关于轴对称,例如:在上不是偶函数.
②满足,或,若时,.
⑵奇函数: 设()为奇函数上一点,则()也是图象上一点.
奇函数的判定:两个条件同时满足
①定义域一定要关于原点对称,例如:在上不是奇函数.
②满足,或,若时,.
8. 对称变换:①y = f(x)
②y =f(x)
③y =f(x)
9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:
在进行讨论.
10. 外层函数的定义域是内层函数的值域.
例如:已知函数f(x)= 1+的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是 .
解:的值域是的定义域,的值域,故,而A,故.
11. 常用变换:
①.
证:
②
证:
12. ⑴熟悉常用函数图象:
例:→关于轴对称. →→
→关于轴对称.
⑵熟悉分式图象:
例:定义域,
值域→值域前的系数之比.
1.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
2.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x)=;
(2)若f(x)是奇函数,0在其定义域内,则(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N=( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );
8.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
9.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
13.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或(或);
14.掌握函数的图象和性质;
函数 (b – ac≠0) )
定义域
值域
奇偶性 非奇非偶函数 奇函数
单调性 当b-ac>0时:分别在上单调递减;当b-ac<0时:分别在上单调递增; 在上单调递增;在上单调递减;
图象
15.实系数一元二次方程的两根的分布问题:
根的情况
等价命题 在上有两根 在上有两根 在和上各有一根
充要条件
注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。
七、常用的初等函数:
(1)一元一次函数:,当时,是增函数;当时,是减函数;
(2)一元二次函数:
一般式:;对称轴方程是 ;顶点为 ;
两点式:;对称轴方程是 ;与轴的交点为 ;
顶点式:;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当时: 为增函数; 为减函数;当时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程的两根为;则:
根的情况
等价命题 在区间上有两根 在区间上有两根 在区间或上有一根
充要条件
注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ; 。
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0注意:(1)与的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数的定义域为,求的取值范围。
已知函数的值域为,求的取值范围。
六、的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
①正比例函数
②; ;
③; ;
④ ;
三数 列
1. ⑴等差、等比数列:
等差数列 等比数列
定义
递推公式 ; ;
通项公式 ()
中项 () ()
前项和
重要性质
⑵看数列是不是等差数列有以下三种方法:
①
②2()
③(为常数).
⑶看数列是不是等比数列有以下四种方法:
①
②(,)①
注①:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.
ii. (ac>0)→为a、b、c等比数列的充分不必要.
iii. →为a、b、c等比数列的必要不充分.
iv. 且→为a、b、c等比数列的充要.
注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.
③(为非零常数).
④正数列{}成等比的充要条件是数列{}()成等比数列.
⑷数列{}的前项和与通项的关系:
[注]: ①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).
②等差{}前n项和 →可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;
②若等差数列的项数为2,则;
③若等差数列的项数为,则,且,
.
3. 常用公式:①1+2+3 …+n =
②
③
[注]:熟悉常用通项:9,99,999,…; 5,55,555,….
4. 等比数列的前项和公式的常见应用题:
⑴生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:
⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:
=.
⑶分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.
5. 数列常见的几种形式:
⑴(p、q为二阶常数)用特证根方法求解.
具体步骤:①写出特征方程(对应,x对应),并设二根②若可设,若可设;③由初始值确定.
⑵(P、r为常数)用①转化等差,等比数列;②逐项选代;③消去常数n转化为的形式,再用特征根方法求;④(公式法),由确定.
①转化等差,等比:.
②选代法:
.
③用特征方程求解:.
④由选代法推导结果:.
6. 几种常见的数列的思想方法:
⑴等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:
一是求使,成立的值;二是由利用二次函数的性质求的值.
⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:
⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.
1.由Sn求an,an={ 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;
2.等差数列;
3.等比数列;
4.首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式解决;
5.熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;
6. 在等差数列中,,;在等比数列中,;
7. 当时,对等差数列有;对等比数列有;
8.若{an}、{bn}是等差数列,则{kan+pbn}(k、p是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kan}、{anbn}等也是等比数列;
9. 若数列为等差(比)数列,则也是等差(比)数列;
10. 在等差数列中,当项数为偶数时,;项数为奇数时,(即);
11.若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形式:(n≥2),于是可依据等比数列的定义求出其通项公式;
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{anbn}、、仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列。
26. 在等差数列中:
(1)若项数为,则
(2)若数为则, ,
27. 在等比数列中:
(1) 若项数为,则
(2)若数为则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
1 an+1-an=…… 如an= -2n2+29n-3
2 (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
三角函数
1. ①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):
②终边在x轴上的角的集合:
③终边在y轴上的角的集合:
④终边在坐标轴上的角的集合:
⑤终边在y=x轴上的角的集合:
⑥终边在轴上的角的集合:
⑦若角与角的终边关于x轴对称,则角与角的关系:
⑧若角与角的终边关于y轴对称,则角与角的关系:
⑨若角与角的终边在一条直线上,则角与角的关系:
⑩角与角的终边互相垂直,则角与角的关系:
2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745 1=57.30°=57°18′
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
4. 三角函数的公式:
(一)基本关系
公式组二 公式组三
公式组四 公式组五 公式组六
(二)角与角之间的互换
公式组一 公式组二
EMBED Equation.3
公式组三 公式组四 公式组五
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
,,,.
注意:①与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).
②与的周期是.
③或()的周期.
的周期为2(,如图,翻折无效).
④的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().
⑤当·;·.
⑥与是同一函数,而是偶函数,则
.
⑦函数在上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的].
⑧定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)
奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)
奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)
= 9 \* GB3 ⑨不是周期函数;为周期函数();
是周期函数(如图);为周期函数();
的周期为(如图),并非所有周期函数都有最小正周期,例如:
.
⑩ 有.
1.三角函数符号规律记忆口诀:一全正,二正弦,三是切,四余弦;
2.对于诱导公式,可用“奇变偶不变,符号看象限”概括;
3.记住同角三角函数的基本关系,熟练掌握三角函数的定义、图像、性质;
4.熟知正弦、余弦、正切的和、差、倍公式,正余弦定理,处理三角形内的三角函数问题勿忘三内角和等于1800,一般用正余弦定理实施边角互化;
5.正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴的交点;正(余)切型函数的对称中心是图象和渐近线分别与轴的交点,但没有对称轴。
6.(1)正弦平方差公式:sin2A-sin2B=sin(A+B)sin(A-B);(2)三角形的内切圆半径r=;(3)三角形的外接圆直径2R=
平面向量
1. 长度相等且方向相同的两个向量是相等的量.
注意:①若为单位向量,则. () 单位向量只表示向量的模为1,并未指明向量的方向.
②若,则∥. (√)
2. ①= ② ③
④设
(向量的模,针对向量坐标求模)
⑤平面向量的数量积: ⑥ ⑦
⑧
注意:①不一定成立;.
②向量无大小(“大于”、“小于”对向量无意义),向量的模有大小.
③长度为0的向量叫零向量,记,与任意向量平行,的方向是任意的,零向量与零向量相等,且.
④若有一个三角形ABC,则0;此结论可推广到边形.
⑤若(),则有. () 当等于时,,而不一定相等.
⑥·=,=(针对向量非坐标求模),≤.
⑦当时,由不能推出,这是因为任一与垂直的非零向量,都有·=0.
⑧若∥,∥,则∥(×)当等于时,不成立.
3. ①向量与非零向量共线的充要条件是有且只有一个实数,使得(平行向量或共线向量).
当与共线同向:当与共线反向;当则为与任何向量共线.
注意:若共线,则 (×)
若是的投影,夹角为,则, (√)
②设=,
∥
⊥
③设,则A、B、C三点共线∥=()
()=()()
()·()=()·()
④两个向量、的夹角公式:
⑤线段的定比分点公式:(和)
设 =(或=),且的坐标分别是,则
推广1:当时,得线段的中点公式:
推广2:则(对应终点向量).
三角形重心坐标公式:△ABC的顶点,重心坐标:
注意:在△ABC中,若0为重心,则,这是充要条件.
4. ⑴正弦定理:设△ABC的三边为a、b、c,所对的角为A、B、C,则.
⑵余弦定理:
⑶正切定理:
⑷三角形面积计算公式:
设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.
①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R
④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA ⑤S△= [海伦公式]
⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb
[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.
如图: 图1中的I为S△ABC的内心, S△=Pr
图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra
附:三角形的五个“心”;
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.
⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即]
则:①AE==1/2(b+c-a)
②BN==1/2(a+c-b)
③FC==1/2(a+b-c)
综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4).
特例:已知在Rt△ABC,c为斜边,则内切圆半径r=(如图3).
⑹在△ABC中,有下列等式成立.
证明:因为所以,所以,结论!
⑺在△ABC中,D是BC上任意一点,则.
证明:在△ABCD中,由余弦定理,有①
在△ABC中,由余弦定理有②,②代入①,化简
可得,(斯德瓦定理)
①若AD是BC上的中线,;
②若AD是∠A的平分线,,其中为半周长;
③若AD是BC上的高,,其中为半周长.
⑻△ABC的判定:
△ABC为直角△∠A + ∠B =
<△ABC为钝角△∠A + ∠B<
>△ABC为锐角△∠A + ∠B>
附:证明:,得在钝角△ABC中,
⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.
三角函数
不 等 式
1. ⑴平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):
(当a = b时取等)
特别地,(当a = b时,)
幂平均不等式:
⑵含立方的几个重要不等式(a、b、c为正数):
①
②
(,);
()
⑶绝对值不等式:
⑷算术平均≥几何平均(a1、a2…an为正数):(a1=a2…=an时取等)
⑸柯西不等式:设则
等号成立当且仅当时成立.(约定时,)
例如:.
⑹常用不等式的放缩法:①
②
2. 常用不等式的解法举例(x为正数):
①
②
类似于
③
1.掌握不等式性质,注意使用条件;
2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法;
3.掌握用均值不等式求最值的方法,在使用a+b≥(a>0,b>0)时要符合“一正二定三相等”;注意均值不等式的一些变形,如;
1.设三角形的三顶点是A(x1,y1)、B(x2,y2)、C(x3,y3),则⊿ABC的重心G为();
2.直线l1:A1x+B1y+C1=0与l2: A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0;
3.两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是;
4.Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件 :A=C≠0且B=0且D2+E2-4AF>0;
5.过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
6.以A(x1,y2)、B(x2,y2)为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0;
7.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标函数;(3)确定目标函数的最优位置,从而获得最优解;
§7. 直线和圆的方程 知识要点
一、直线方程.
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
二、圆的方程.
1. ⑴曲线与方程:在直角坐标系中,如果某曲线上的 与一个二元方程的实数建立了如下关系:
①曲线上的点的坐标都是这个方程的解.
②以这个方程的解为坐标的点都是曲线上的点.
那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).
⑵曲线和方程的关系,实质上是曲线上任一点其坐标与方程的一种关系,曲线上任一点是方程的解;反过来,满足方程的解所对应的点是曲线上的点.
注:如果曲线C的方程是f(x ,y)=0,那么点P0(x0 ,y)线C上的充要条件是f(x0 ,y0)=0
2. 圆的标准方程:以点为圆心,为半径的圆的标准方程是.
特例:圆心在坐标原点,半径为的圆的方程是:.
注:特殊圆的方程:①与轴相切的圆方程
②与轴相切的圆方程
③与轴轴都相切的圆方程
3. 圆的一般方程: .
当时,方程表示一个圆,其中圆心,半径.
当时,方程表示一个点.
当时,方程无图形(称虚圆).
注:①圆的参数方程:(为参数).
②方程表示圆的充要条件是:且且.
③圆的直径或方程:已知(用向量可征).
4. 点和圆的位置关系:给定点及圆.
①在圆内②在圆上
③在圆外
5. 直线和圆的位置关系:
设圆圆:; 直线:;
圆心到直线的距离.
①时,与相切;
附:若两圆相切,则相减为公切线方程.
②时,与相交;
附:公共弦方程:设
有两个交点,则其公共弦方程为.
③时,与相离.
附:若两圆相离,则相减为圆心的连线的中与线方程.
由代数特征判断:方程组用代入法,得关于(或)的一元二次方程,其判别式为,则:
与相切;与相交;与相离.
注:若两圆为同心圆则,相减,不表示直线.
6. 圆的切线方程:圆的斜率为的切线方程是过圆
上一点的切线方程为:.
①一般方程若点(x0 ,y0)在圆上,则(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特别地,过圆上一点的切线方程为.
②若点(x0 ,y0)不在圆上,圆心为(a,b)则,联立求出切线方程.
圆锥曲线
1. 椭圆方程的第一定义:
⑴①椭圆的标准方程:
i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:.
②一般方程:.③椭圆的标准参数方程:的参数方程为(一象限应是属于).
⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:
i. 设为椭圆上的一点,为左、右焦点,则
由椭圆方程的第二定义可以推出.
ii.设为椭圆上的一点,为上、下焦点,则
由椭圆方程的第二定义可以推出.
由椭圆第二定义可知:归结起来为“左加右减”.
⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和
⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.
⑸若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.
二、双曲线方程.
1. 双曲线的第一定义:
⑴①双曲线标准方程:. 一般方程:.
⑵①i. 焦点在x轴上:
顶点: 焦点: 准线方程 渐近线方程:或
ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .
②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.
⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.
例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.
⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.
简证: = .
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.
三、抛物线方程.3. 设,抛物线的标准方程、类型及其几何性质:
图形
焦点
准线
范围
对称轴 轴 轴
顶点 (0,0)
离心率
焦点
注:①顶点.
②则焦点半径;则焦点半径为.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为(或)(为参数).
四、圆锥曲线的统一定义..
4. 圆锥曲线的统一定义:平面内到定点F和定直线的距离之比为常数的点的轨迹.
当时,轨迹为椭圆;
当时,轨迹为抛物线;
当时,轨迹为双曲线;
当时,轨迹为圆(,当时).
5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.
因为具有对称性,所以欲证AB=CD, 即证AD与BC的中点重合即可.
1.椭圆焦半径公式:设P(x0,y0)为椭圆(a>b>0)上任一点,焦点为F1(-c,0),F2(c,0),则(e为离心率);
2.双曲线焦半径公式:设P(x0,y0)为双曲线(a>0,b>0)上任一点,焦点为F1(-c,0),F2(c,0),则:(1)当P点在右支上时,;
(2)当P点在左支上时,;(e为离心率);
另:双曲线(a>0,b>0)的渐近线方程为;
3.抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p>0)上任意一点,F为焦点,则;y2=2px(p<0)上任意一点,F为焦点,则;
4.涉及圆锥曲线的问题勿忘用定义解题;
5.共渐进线的双曲线标准方程为为参数,≠0);
6.计算焦点弦长可利用上面的焦半径公式,
一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长
,这里体现了解析几何“设而不求”的解题思想;
7.椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a>0,b>0)的焦点到渐进线的距离为b;
8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx2=1;
9.抛物线y2=2px(p>0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1)=x1+x2+p;(2)y1y2=-p2,x1x2=;
10.过椭圆(a>b>0)左焦点的焦点弦为AB,则,过右焦点的弦;
11.对于y2=2px(p≠0)抛物线上的点的坐标可设为(,y0),以简化计算;
12.处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(a>b>0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a>0,b>0),类似可得:KAB.KOM=;对于y2=2px(p≠0)抛物线有KAB=
13.求轨迹的常用方法:
(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;
(3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;
(4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
§13. 导 数 知识要点
1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.
注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.
②以知函数定义域为,的定义域为,则与关系为.
注:①可导的奇函数函数其导函数为偶函数.
②可导的偶函数函数其导函数为奇函数.
2. 导数的几何意义:
函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为
3. 求导数的四则运算法则:
(为常数)
注:①必须是可导函数.
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
例如:设,,则在处均不可导,但它们和
在处均可导.
4. 复合函数的求导法则:或
复合函数的求导法则可推广到多个中间变量的情形.
5. 函数单调性:
⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.
⑵常数的判定方法;
如果函数在区间内恒有=0,则为常数.
注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x) = 0,同样是f(x)递减的充分非必要条件.
②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.
6. 极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)
当函数在点处连续时,
①如果在附近的左侧>0,右侧<0,那么是极大值;
②如果在附近的左侧<0,右侧>0,那么是极小值.
也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.
例如:函数,使=0,但不是极值点.
②例如:函数,在点处不可导,但点是函数的极小值点.
7. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
注:函数的极值点一定有意义.
8. 几种常见的函数导数:
I.(为常数) ()
II.
十四、直线、平面、简单几何体
1.从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
2. 已知:直二面角M-AB-N中,AE M,BF N,∠EAB=,∠ABF=,异面直线AE与BF所成的角为,则
3.立平斜公式:如图,AB和平面所成的角是,AC在平面内,AC和AB的射影AB成,设∠BAC=,则coscos=cos;
4.异面直线所成角的求法:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
5.直线与平面所成的角
斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;
6.二面角的求法
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
(4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此方法不必在图形中画出平面角;
特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
7.空间距离的求法
(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;
(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;
(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;
8.正棱锥的各侧面与底面所成的角相等,记为,则S侧cos=S底;
9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为因此有cos2+cos2+cos2=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为则有cos2+cos2+cos2=2;
10.正方体和长方体的外接球的直径等与其体对角线长;
11三视图,表面积,体积公式
12.球的体积公式V=,表面积公式;掌握球面上两点A、B间的距离求法:(1)计算线段AB的长,(2)计算球心角∠AOB的弧度数;(3)用弧长公式计算劣弧AB的长;
13.在解答立体几何的有关问题时,应注意使用转化的思想:
①利用构造矩形、直角三角形、直角梯形将有关棱柱、棱锥的问题转化成平面图形去解决.
②将空间图形展开是将立体几何问题转化成为平面图形问题的一种常用方法.
③补法把不规则的图形转化成规则图形,把复杂图形转化成简单图形.
④利用三棱锥体积的自等性,将求点到平面的距离等问题转化成求三棱锥的高.
⑤平行转化⑥垂直转化
十五.算法与程序框图,概率与统计,推理与证明,复数
统计知识点:1、抽样方法。
(1)简单随机抽样(2)系统抽样(3)分层抽样
2、样本分布估计总体分布
(1)频率分布表 (2)直方图
(3)折线图 (4)散点图 (5)茎叶图
3、样本特征数估计总体特征数
(1)平均数(2)方差 (3)众数 (4)中位数
4、线性回归方程。
十六抽样方法、总体分布的估计与总体的期望和方差
1.掌握抽样的二种方法:(1)简单随机抽样(包括抽签符和随机数表法);(2)分层抽样,常用于某个总体由差异明显的几部分组成的情形;
2.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;
3.总体特征数的估计:(1)学会用样本平均数去估计总体平均数;(2)学会用样本方差去估计总体方差及总体标准差;
o
x
y
y=a
x=-c
A
x
y
o
20
30