1.3 正方形的性质与判定 同步练习(无答案) 2023--2024学年北师大版九年级数学上册

文档属性

名称 1.3 正方形的性质与判定 同步练习(无答案) 2023--2024学年北师大版九年级数学上册
格式 docx
文件大小 276.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-10-27 08:31:23

图片预览

文档简介

北师大版九年级上册1.3 正方形的性质与判定
一、选择题
1. 下列命题中,真命题是( )
A.如果两个角互为邻补角,那么这两个角一定相等
B.对角线互相垂直的四边形是菱形
C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半
D.两条对角线互相平分且相等的四边形是正方形
2. 下列命题中,真命题是(  )
A.四个角相等的菱形是正方形 B.一组对边平行,一组对边相等的四边形是平行四边形
C.有两边相等的平行四边形是菱形 D.两条对角线相等的四边形是矩形
3. 如图,以正方形的边为一边,在正方形内部作等边,连,则的度数为( )

A. B. C. D.
4. 如图,在边长为的正方形中,对角线,相交于点,为线段的中点,连接,则线段的长为(  )cm. 
A. B. C.1 D.2
5. 如图,长方形E的长是宽的2倍,图中所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为5、23、8,则正方形D
的面积为( )
A.1 B. C.2 D.6
6. 如图,在正方形的外侧作等边三角形,则度数为( )
A. B. C. D.
7. 如图,是正方形内一点,是等边三角形,是对角线上一点,连接,,若,则的最小值为( )

A.1 B.2 C. D.
8. 如图,点E、F、G分别是正方形的边、、上的点,连接,,.且,,的度数为,则
的度数为( )

A. B. C. D.
9. 如图,四个全等的直角三角形围成正方形和正方形,连接,分别交,于点. 已知,正方形的面积为24,则图中阴影部分的面积之和为( )
A. B. C. D.
10. 在正方形中,对角线、交于点,的平分线交于点,交于点.过点作于点,交于点.下列结论:①;②四边形是菱形;③;④若,则.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
11. 如图,正方形的边长为8,对角线与交于点,点,分别在,的延长线上,且,,为的中点,连接,交于点
,连接,则的长为( )
A. B. C. D.
二、填空题
12. 如图,在平面直角坐标系中,一次函数的图象经过正方形的顶点A和C,已知点A的坐标为,则一次函数的解析式为_______

13. 如图,正方形的对角线,相交于点,平分交于点,若,则的长为___.
14. 如图,正方形的边长为6,点E,F分别在边上,且,连接交于点G,连接,取的中点H,连接,则
的长为________.

15. 如图,正方形的边长为,点为对角线上一动点点不与、重合,过点作交直线于,将线段绕点逆时针旋转得到线段,连接,,,下列结论:;;;的最小值为,其中正确的是______填写所有正确结论的序号

三、解答题
16. 图①、图②、图③均是的正方形网格,每个小正方形的边长均为1,小正方形的顶点称为格点.用直尺在给定的网格中按要求画图,所画图形的顶点均在格点上.

(1)在图①中,以线段为一边,画一个菱形.
(2)在图②中,画一个三角形,使得是这个三角形的中位线.
(3)在图③中,以点E为顶点,画一个面积最大的正方形.
17. 在正方形中,点O为对角线的中点,点E在对角线上,连接,点F在直线上(点F与点D不重合),且.
(1)如图1,当点E在线段上(不与端点重合)时.
①求证:;
②用等式表示线段,,的数量关系并证明;
(2)如图2,当点E在线段上(不与端点重合)时,补全图形,并直接写出线段,,的数量关系.
18. 感知:如图(1)所示,四边形是正方形,点是线段上的任意一点,于点,,且交于点,求证:.
探究一:如图(2)所示,若点在的延长线上,上述其余条件不变,则,,存在怎样的等量关系?猜想并证明这一结论.
探究二:若点在的延长线上,上述其余条件不变,则,,又存在怎样的等量关系?直接写出结论.

19. 在平面直角坐标系中,O为原点,是等腰直角三角形,,点D在x轴的负半轴上,点E在第二象限,矩形的顶点,点C在x轴的正半轴上,点A在y轴的正半轴上.将沿x轴向右平移,得到,点D,O,E的对应点分别为.

(1)如图1,当经过点A时,求点的坐标;
(2)设,与矩形重叠部分的面积为S;
①如图②,当与矩形重叠部分为五边形时,与相交于点M,分别与,交于点N,P,试用含有t的式子表示S,并直接写出t的取值范围;
②请直接写出满足的所有t的值.