8.2 解一元一次不等式(3)(含答案)

文档属性

名称 8.2 解一元一次不等式(3)(含答案)
格式 rar
文件大小 26.9KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2008-04-10 20:51:00

图片预览

文档简介

8.2 解一元一次不等式(3)
◆回顾探索
1.含有_____个未知数,未知项的次数是_____次,且含未知数的式子是______,这样的不等式叫一元一次的不等式.
2.解一元一次不等式的一般步骤是:①________(根据不等式的基本性质2或3);②________(根据等式的运算法则);③_________(根据不等式的基本性质1);④_____________(根据整式的运算法则);⑤_________(根据不等式的基本性质2或3).
◆课堂测控
测试点一 一元一次不等式的概念
1.若x|a-1|>a+1,则a=_______.
2.下列不等式中是一元一次不等式的是( )
A.x+y<2 B.x2>3 C.-<1 D.>-3
3.下列不等式,是一元一次不等式的有( )
①2a-1=4a+9;②3x-6>3x+7;③<5;④x2>1;⑤2x+6>x.
A.1个 B.2个 C.3个 D.4个
4.若不等式(k-1)x-3>0是关于x的一元一次不等式,求k的值(或范围).
测试点二 一元一次不等式的解法
5.在解不等式的下列过程中,错误的一步是( )
A.去分母得5(2+x)>3(2x-1) B.去括号得10+5x>6x-3
C.移项得5x-6x>-3-10 D.系数化为1得x>13
6.使不等式x-5>4x-1成立的值中最大整数是( )
A.2 B.-1 C.-2 D.0
7.解下列不等式,并把解集在数轴上表示出来.
(1)3x+1≤2x+4 (2)5(x-1)>4(x+2)
8.解不等式,小兵的解答过程是这样的.
解:去分母,得x+5-1<3x+2 ①
移项得x-3x<2-5+1 ②
合并同类项,得-2x<-2 ③
系数化为1,得x<1 ④
请问:小兵同学的解答是否正确?如果错误,请指出错在哪里?并给出正确的解答.
◆课后测控
1.当x_______时,代数式的值是负数.
2.不等式的正整数解为________.
3.下列说法中,正确的是( )
A.如果a>1,那么0<<1 B.若a<1,则>1
C.若a2>0,则a>0 D.若-11
4.若4与某数的7倍的和不小于6与某数的5倍的差,设某数为x,则x的取值范围是( )
A.x≥ B.x≤ C.x≥- D.x≤-
5.下列不等式,是一元一次不等式的是( )
A.2(1-y)+y<4y+2 B.x2-2x-1<0 C.+> D.x+36.解下列不等式,并把解集在数轴上表示出来.
(1)4(x-1)<5(x-1)+1
7.(1)当x取何值时,代数式的值的差大于1?
(2)当x取哪些正整数时,代数式3-的值?
8.某城市的一种出租车起步价是8元(即行程在3千米以内都需付8元车费),达到或超过3千米后,每增加1千米,加价1.5元(不足1千米的部分按1千米计算),现在某人乘这种出租车从A地到B地,支付车费18.5元,从A地到B地的路程大约是多少?
◆拓展创新
黄冈市某中学的校长准备在暑假带领该校的市级三好学生去北京旅游,甲旅行社说:“若校长买全票一张,则其余学生可享受半价优惠”.乙旅行说:“包括校长在内,全体人员均按全票的6折优惠”,假设黄冈到北京的全票单价为1000元.
(1)设学生人数为x人,甲旅行社收费为y元,乙旅行社收费为y元,分别写出两家旅行社的收费表达式;
(2)就学生人数x讨论,哪家旅行社更优惠?
答案:
回顾探索
1.一 一 整式
2.①去分母 ②去括号 ③移项 ④合并同类项 ⑤将x的系数化为1
课堂测控
1.±2(点拨:由题设知:│a│-1=1)
2.D(点拨:由不等式的概念判断)
3.A(点拨:只有2x+6>x是一元一次不等式)
4.由题设知k-1≠0,即k≠1.
5.D(点拨:正确的结果是x<13)
6.C(点拨:不等式x-5>4x-1的解集是x<-)
7.(1)x≤3 (2)x>13
8.解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向改变,正确的解答是:
去分母得(x+5)-2<3x+2,
移项,得x-3x<2+2-5,
合并同类项,得-2x<-1,
系数化为1,得x>.
课后测控
1.<-(点拨:依题意得不等式3x+1<0)
2.1,2,3,4,5(点拨:不等式的解集是x≤5)
3.A
4.A(点拨:依题意列出不等式为:7x+4≥6-5x)
5.A(点拨:根据一元一次不等式的概念,判断)
6.(1)x>0 (2)x≥-3 (3)x<-9 (4)x≤
(点拨:(4)题去分母,得6(2x-1)-4(2x+5)≥3(6x-7)-12,去括号,
得12x-6-8x-20≥18x-21-12,移项并合并同类项,得-14x≥-7,
系数化为1,得x≤)
7.(1)x<(点拨:依题意可列不等式:>1)
(2)x的值为1,2(点拨:依题意得不等式:3-,
解此不等式得x≤,正整数x有1,2)
8.设从甲地到乙地的路程大约是x千米,依题意得:
8+1.5(x-3)≤18.5,
解这个不等式,得x≤10.
因为不足1千米按1千米计,所以9即从甲地到乙地的路程大于9千米而不大于10千米.
拓展创新
(1)y甲=1000+500x,y乙=600(x+1),其中x是正整数.
(2)令y甲=y乙,得1000+500x=600(x+1),解得x=4.
令y甲4.
令y甲>y乙,得1000+500x>600(x+1),解得x<4.
若学生人数为4人,两家优惠程度相同;若学生人数超过4人,甲旅行社更优惠;若学生人数不足4人,乙旅行社更优惠.
- 6 -