人教版数学九年级上册 24.2.2 直线和圆的位置关系 教学设计(表格式)

文档属性

名称 人教版数学九年级上册 24.2.2 直线和圆的位置关系 教学设计(表格式)
格式 docx
文件大小 353.9KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-10-28 13:28:55

图片预览

文档简介

教学设计
一、基本信息
教师姓名 课名 直线和圆的位置关
学科 数学 章节 24.2.2 直线和圆的位置关系 (第1课时) 教材版本 人教版
课时 第 课时 课型 新课讲授 年级 九年级
教学目标 掌握直线和圆的三种位置关系及其数量间的关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法.
三、学习者分析 学生具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象.为了加强他们的自学能力,提高课堂效率,根据他们的特点,本节课以学生自主探究方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,注重培养学生的自学能力,通过一定练习,激发学生的求知欲和自信心
四、教学重难点分析及解决措施 列举贴近学生生活实际的例子,通过设计有效的数学问题,激活学生的数学思维,引导探索直线和圆的位置关系及圆的切线的性质定理。 本节课在创设情境导入新课、演示讲解突破难点、师生互动探索发现等环节运用了Flash动画、PPt课件等多种信息技术这些技术。播放微视频,贴近学生生活,激发学生学习兴趣;利用“信息技术”,不仅能有效的突出教学重点,突破难点,还可以帮助学生更好地理解和感悟数学知识,唤起学生的求知欲望,使数学课堂不再枯燥乏味,使学生感受到数学知识和生活联系如此密切,从而喜欢学习数学。
五、运用的能力点 能力点1:A2 能力点2:A3 能力点3:B2
教学设计
教学环节 起止时间(’”- ’”)(按照完整视频的时间点) 环节目标 教学内容 学生活动 媒体作用及分析
导入新课 0’0”-0 ’50” 学生经历观察分析,抽象出直线和圆的三种位置关 如图,在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗? 学生观看ppt,思考、归纳:直线和圆的位置。 利用PPT展示,让学生经历观察、分析,抽象出直线和圆的三种位置关
探索新知 1’43”-4 ’56” 4’56”-8 ’12” 8’18”-13 ’08” 学生自主探索掌握直线与圆的位置关系 探究一:如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象 一下,直线和圆有几种位置关系吗? 在纸上画一条直线l,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,它与直线l的公共点的个数吗? 请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个? 教师展示切割钢管过程,学生观察并填表.ppt课件展示 填一填: 直线与圆的位置关系相离相切相交 图形公共点个数0个1个2个公共点名称切点交点直线名称 切线
教师归纳: 直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A). 探究二 用数量关系判断直线与圆的位置关系 教师问:同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?学生讨论,归纳总结答案,并由学生代表回答问题. 教师问:怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?(出示课件12) 学生讨论,归纳总结答案后教师归纳:根据直线和圆相交、相切、相离的定义: 直线和⊙O相交 d<r; 直线和⊙O相离 d>r; 直线和⊙O相切 d = r. 教师演示:根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线. 教师归纳: 直线和⊙O相交 d<r 两个 直线和⊙O相离 d>r 0个 直线和⊙O相切 d=r 1个 位置关系 数量关系 公共点个数 学生交流,回答问题:有三种位置关系 学生自主探索判断直线与圆的位置关系的依据:根据直线与圆交点的个数。 学生讨论,归纳总结答案,并由学生代表回答问题. 学生根据教师演示进行操作 ppt课件展示“相交”“相切”“相离”的图片。 ppt课件展示图片,进一步巩固本节所学知识。
课堂练习 13 ’08”-36 ’50” 考查学生对定理的理解和应用 例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么? 巩固练习: 1.Rt△ABC,∠C=90°AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点? 2.Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点? 3.圆的直径是13cm,如果直线与圆心的距离分别是 (1)4.5cm ;(2)6.5cm;(3)8cm; 那么直线与圆分别是什么位置关系?有几个公共点? 学生独立思考后一生板演. 利用PPT、实物投影展示,考查学生对定理的理解和应用
课堂小结 36 ’52”-39 ’05” 理 清本 节课 的学 习内 容 ppt课件展示图片,进一步巩固本节所学知识。
七、微课播放
八、教学流程图 创设情境,引出问题发现问题,探究方法一探究方法二,加深理解强化训练,巩固双基小结归纳,畅谈感受微课播放布置作业,提高升华 微视频展示
布置作业:教材101页习题24.2 1、2