高考生物真题分类汇编
专题15 神经调节
考点1 神经调节的结构基础、基本方式及特点
1.(2023山东,9,2分)脊髓、脑干和大脑皮层中都有调节呼吸运动的神经中枢,其中只有脊髓呼吸中枢直接支配呼吸运动的呼吸肌,且只有脑干呼吸中枢具有自主节律性。下列说法错误的是 ( )
A.只要脑干功能正常, 自主节律性的呼吸运动就能正常进行
B.大脑可通过传出神经支配呼吸肌
C.睡眠时呼吸运动能自主进行体现了神经系统的分级调节
D.体液中CO2浓度的变化可通过神经系统对呼吸运动进行调节
答案 A 因为只有脊髓呼吸中枢直接支配呼吸运动的呼吸肌,所以脑干呼吸中枢需要通过脊髓控制呼吸肌,来进行自主节律性的呼吸运动,体现了神经系统的分级调节,A错误,C正确;大脑可通过传出神经控制呼吸肌,有意识地加快呼吸或屏住呼吸,B正确;CO2作为信号分子可作用于神经系统,调节呼吸运动,D正确。
2.(2023全国甲,3,6分)中枢神经系统对维持人体内环境的稳态具有重要作用。下列关于人体中枢神经系统的叙述,错误的是 ( )
A.大脑皮层是调节机体活动的最高级中枢
B.中枢神经系统的脑和脊髓中含有大量的神经元
C.位于脊髓的低级中枢通常受脑中相应的高级中枢调控
D.人体脊髓完整而脑部受到损伤时,不能完成膝跳反射
答案 D 位于人大脑表层的大脑皮层,是整个中枢神经系统中调节机体活动的最高级中枢,A正确;脊椎动物和人的中枢神经系统包括脑和脊髓,它们含有大量的神经元,B正确;一般来说,位于脊髓的低级中枢受脑中相应的高级中枢的调控,C正确;膝跳反射的神经中枢位于脊髓,不需要大脑支配,即使脑部受到损伤,只要反射弧完整就可完成膝跳反射,D错误。
3.(2023北京,7,2分)人通过学习获得各种条件反射,这有效提高了对复杂环境变化的适应能力。下列属于条件反射的是 ( )
A.食物进入口腔引起胃液分泌
B.司机看见红色交通信号灯踩刹车
C.打篮球时运动员大汗淋漓
D.新生儿吸吮放入口中的奶嘴
答案 B 条件反射是出生后在生活过程中通过学习和训练而形成的反射,B符合题意;A、D表示的都是先天就具有的非条件反射,A、D不符合题意;打篮球属于条件反射,运动员大汗淋漓不属于条件反射,C不符合题意。
4.(2022重庆,13,2分)如图表示人动脉血压维持相对稳定的一种反射过程。动脉血压正常时,过高过紧的衣领会直接刺激颈动脉窦压力感受器,引起后续的反射过程,使人头晕甚至晕厥,即“衣领综合征”。下列叙述错误的是 ( )
A.窦神经受损时,颈动脉窦压力感受器仍可产生兴奋
B.动脉血压的波动可通过神经调节快速恢复正常
C.“衣领综合征”是反射启动后引起血压升高所致
D.动脉血压维持相对稳定的过程体现了负反馈调节作用
答案 C 窦神经受损时,颈动脉窦压力感受器功能不受影响,仍可接受适宜刺激产生兴奋,A正确;由题图可知,动脉血压的升高和下降均可通过神经调节恢复正常,神经调节的特点之一为快速,B正确;“衣领综合征”是颈动脉窦压力感受器受到过高过紧的衣领的直接刺激而兴奋,通过反射活动使动脉血压下降所致,C错误;负反馈是指在一个系统中,系统工作的效果,反过来又作为信息调节该系统的工作,并且使系统工作的效果减弱或受到限制,它可使系统保持稳定,题图中动脉血压维持相对稳定的过程体现了负反馈调节作用,D正确。
5.(2022浙江1月选考,11,2分)膝反射是一种简单反射,其反射弧为二元反射弧。下列叙述错误的是 ( )
A.感受器将刺激转换成神经冲动并沿神经纤维单向传导
B.神经肌肉接点的神经冲动传递伴随信号形式的转换
C.突触后膜去极化形成的电位累加至阈值后引起动作电位
D.抑制突触间隙中递质分解的药物可抑制膝反射
答案 D 药物抑制突触间隙中神经递质的分解,会导致神经递质持续作用于突触后膜,而不会抑制膝反射,D错误。
61.(2022湖南,4,2分)情绪活动受中枢神经系统释放神经递质调控,常伴随内分泌活动的变化。此外,学习和记忆也与某些神经递质的释放有关。下列叙述错误的是 ( )
A.剧痛、恐惧时,人表现为警觉性下降,反应迟钝
B.边听课边做笔记依赖神经元的活动及神经元之间的联系
C.突触后膜上受体数量的减少常影响神经递质发挥作用
D.情绪激动、焦虑时,肾上腺素水平升高,心率加速
答案 A 剧痛、恐惧时,在相关神经的作用下,肾上腺素水平升高,机体表现为警觉性提高,反应灵敏,A错误;边听课边做笔记属于学习和记忆,由题意可知学习和记忆与某些神经递质的释放有关,依赖神经元的活动及神经元之间的联系,B正确;神经递质与突触后膜上的受体特异性结合,使下一个神经元兴奋或抑制,所以突触后膜上的受体数量减少会影响神经递质发挥作用,C正确;情绪激动、焦虑时,交感神经兴奋,肾上腺素水平升高,使心率加速,D正确。
7.(2022山东,7,2分)缺血性脑卒中是因脑部血管阻塞而引起的脑部损伤,可发生在脑的不同区域。若缺血性脑卒中患者无其他疾病或损伤,下列说法错误的是 ( )
A.损伤发生在大脑皮层S区时,患者不能发出声音
B.损伤发生在下丘脑时,患者可能出现生物节律失调
C.损伤导致上肢不能运动时,患者的缩手反射仍可发生
D.损伤发生在大脑时,患者可能会出现排尿不完全
答案 A S区为运动性语言中枢,损伤后能发出声音,但不能讲话,A错误;下丘脑与生物节律的控制有关,B正确;缩手反射的神经中枢位于脊髓,脑部损伤导致上肢不能运动时不影响缩手反射的发生,C正确;排尿的高级中枢在大脑皮层,低级中枢在脊髓,若大脑皮层的排尿中枢损伤,患者可能会出现排尿不完全,D正确。
8.(2022辽宁,5,2分)下列关于神经系统结构和功能的叙述,正确的是 ( )
A.大脑皮层H区病变的人,不能看懂文字
B.手的运动受大脑皮层中央前回下部的调控
C.条件反射的消退不需要大脑皮层的参与
D.紧张、焦虑等可能抑制成人脑中的神经发生
答案 D 大脑皮层H区是听觉性语言中枢,H区病变,病人能讲话、书写,也能看懂文字,能听见别人发音,但不懂其含义,A错误;下肢的运动受大脑皮层中央前回顶部调控,头部器官的运动受大脑皮层中央前回下部调控,其他相应器官(如手)的运动则受大脑皮层中央前回其他相应部位调控,B错误;条件反射的建立与消退均需要大脑皮层的参与,C错误;神经发生包括神经细胞的增殖、分化、迁移和存活等,成人脑中有神经发生,但应激(精神紧张、焦虑不安等)会抑制神经发生,D正确。
9.(2020浙江7月选考,16,2分)人的一侧大脑皮层外侧面示意图如下,图中甲、乙、丙和丁表示部位。某人的右腿突然不能运动,经医生检查后,发现他的右腿无力。推测该患者大脑皮层的受损部位可能位于图中的( )
A.甲 B.乙 C.丙 D.丁
答案 A 由题图可知,甲、丁属于运动区(中央前回),乙、丙属于体觉区(中央后回),该患者右腿突然不能运动,说明大脑皮层控制腿部运动的运动区功能异常,结合大脑皮层对躯体的运动控制具有交叉性的特点可知,下肢腿部功能异常受损部位应在运动区顶部,即甲,A正确。
10.(2019北京理综,2,6分)为探究运动对海马脑区发育和学习记忆能力的影响,研究者将实验动物分为运动组和对照组,运动组每天进行适量的有氧运动(跑步/游泳)。数周后,研究人员发现运动组海马脑区发育水平比对照组提高了1.5倍,靠学习记忆找到特定目标的时间缩短了约40%。根据该研究结果可得出( )
A.有氧运动不利于海马脑区的发育
B.规律且适量的运动促进学习记忆
C.有氧运动会减少神经元间的联系
D.不运动利于海马脑区神经元兴奋
答案 B 本题借助神经系统的相关知识,考查考生获取信息、解决生物学问题的能力;通过对影响海马脑区发育和学习记忆能力的因素分析,体现了科学思维素养中的演绎与推理要素。根据“运动组海马脑区发育水平比对照组提高了1.5倍”推知,有氧运动有利于海马脑区的发育和增加神经元间的联系,A、C错误;根据“靠学习记忆找到特定目标的时间缩短了约40%”推知,规律且适量的运动可促进学习记忆且有利于海马脑区神经元兴奋,B正确,D错误。
11.(2018浙江4月选考,27,2分)人体各部位的感觉与运动机能在大脑皮层体觉区与运动区中有它的代表区。下列关于人大脑皮层功能的叙述,正确的是( )
A.一侧手指传入神经上的神经冲动,可传到对侧大脑皮层中央后回中间部
B.一侧大脑皮层中央前回底部受损,会使对侧下肢的运动功能出现障碍
C.头面部肌肉的代表区,在运动区呈倒置排列即口部在上眼部在下
D.分辨精细的部位如手,在体觉区所占的面积比躯干的小
答案 A 一侧手指传入神经上的神经冲动,可传到对侧大脑皮层中央后回中间部,A正确;一侧大脑皮层中央前回底部受损,会使面部运动出现功能障碍,B错误;头面部肌肉的代表区,在运动区呈正向排列,即眼部在上口部在下,C错误;分辨精细的部位如手,在体觉区所占的面积比躯干的大,D错误。
12.(2017海南单科,15,2分)下列关于人体中枢神经系统的叙述,错误的是( )
A.小脑损伤可导致身体平衡失调
B.人的中枢神经系统包括脑和脊髓
C.大脑皮层具有躯体感觉区和运动区
D.下丘脑参与神经调节而不参与体液调节
答案 D 小脑的主要作用是维持身体平衡,小脑损伤可导致身体平衡失调,A正确;脑和脊髓构成了人的中枢神经系统,B正确;躯体感觉区和运动区都位于大脑皮层,C正确;下丘脑既能参与神经调节,又可以通过分泌激素参与体液调节,D错误。
13.(2011海南单科,9,2分)下列实例能够说明神经系统中的高级中枢对低级中枢有控制作用的是( )
A.针刺指尖引起缩手反射
B.短期记忆的多次重复可形成长期记忆
C.大脑皮层语言H区损伤,导致人不能听懂别人讲话
D.意识丧失的病人能排尿但不能控制,意识恢复后可控制
答案 D A为低级神经中枢控制的反射活动,无高级神经中枢参与;B和C均为仅由高级神经中枢控制的活动;意识丧失的病人能排尿,说明排尿反射是由低级中枢控制的反射活动,但无意识的人不能控制而有意识的人能控制排尿,说明高级中枢对低级中枢有控制作用。故D正确。
14.(2022山东,23,10分)迷走神经是与脑干相连的脑神经,对胃肠的蠕动和消化腺的分泌活动起促进作用,还可通过一系列过程产生抗炎效应,如图所示。
分组 处理 TNF-α浓度
甲 腹腔注射生理盐水 +
乙 腹腔注射LPS ++++
丙 腹腔注射LPS+A处理 ++
注:“+”越多表示浓度越高
(1)迷走神经中促进胃肠蠕动的神经属于 (填“交感神经”或“副交感神经”)。交感神经和副交感神经对同一器官的作用通常是相反的,其意义是
。
(2)消化液中的盐酸在促进消化方面的作用有 、 、 。
(答出3种作用即可)
(3)研究人员对图中抗炎过程进行了相关实验,实验分组及结果见表。通过腹腔注射脂多糖(LPS)可使大鼠出现炎症,检测TNF-α浓度可评估炎症程度。据图分析,若丙组的A处理仅在肠巨噬细胞内起作用,推测A处理的3种可能的作用机制: ; ; 。
答案 (1)副交感神经 可使机体对外界刺激作出更精确的反应,以更好地适应环境变化 (2)为胃蛋白酶提供适宜pH 使食物中的蛋白质变性 使促胰液素分泌增加(或其他合理答案,以上三个空的答案顺序可颠倒) (3)抑制TNF-α合成 抑制TNF-α释放 增加N受体数量(或其他合理答案,以上三个空的答案顺序可颠倒)
解析 (1)副交感神经活动占据优势时,心跳减慢,胃肠蠕动和消化液的分泌加强,故迷走神经中促进胃肠蠕动的神经属于副交感神经。交感神经和副交感神经对同一器官的作用,可以使机体对外界刺激作出更精确的反应,使机体更好地适应环境的变化。(2)消化液中的盐酸可以促进淀粉的分解,可以为胃蛋白酶提供适宜的pH,提高胃蛋白酶的活性,又能使食物中的蛋白质发生变性,还能作为信号分子进入小肠,促进促胰液素的分泌等。(3)注射LPS可使TNF-α浓度增加,大鼠出现炎症,而A处理可有效降低TNF-α浓度。若丙组的A处理仅在肠巨噬细胞内起作用,结合题图可以从N受体、TNF-α的合成、TNF-α的释放等角度入手,如增加N受体的数量、增强N受体结合乙酰胆碱的能力、抑制TNF-α的合成、抑制TNF-α的释放、抑制囊泡运输等。
考点2 兴奋的产生与传导
1.(2023海南,9,3分)药物W可激活脑内某种抑制性神经递质的受体,增强该神经递质的抑制作用,可用于治疗癫痫。下列有关叙述错误的是 ( )
A.该神经递质可从突触前膜以胞吐方式释放出来
B.该神经递质与其受体结合后,可改变突触后膜对离子的通透性
C.药物W阻断了突触前膜对该神经递质的重吸收而增强抑制作用
D.药物W可用于治疗因脑内神经元过度兴奋而引起的疾病
答案 C 神经递质可由突触前膜通过胞吐方式释放,A正确;神经递质与突触后膜上相应的受体结合后,可使特定的离子通道打开,改变突触后膜对离子的通透性,引起突触后膜兴奋或抑制,B正确;药物W的作用是通过激活脑内某种抑制性神经递质的受体,增强该神经递质的抑制作用实现的,与突触前膜对该神经递质的重吸收过程无关,C错误;药物W可增强抑制性神经递质的抑制作用,故药物W可用于治疗因脑内神经元过度兴奋而引起的疾病,D正确。
2.(2023浙江6月选考,20,2分)神经元的轴突末梢可与另一个神经元的树突或胞体构成突触。通过微电极测定细胞的膜电位,PSP1和PSP2分别表示突触a和突触b的后膜电位,如图所示。下列叙述正确的是 ( )
A.突触a、b前膜释放的递质,分别使突触a后膜通透性增大、突触b后膜通透性降低
B.PSP1和PSP2由离子浓度改变形成,共同影响突触后神经元动作电位的产生
C.PSP1由K+外流或Cl-内流形成,PSP2由Na+或Ca2+内流形成
D.突触a、b前膜释放的递质增多,分别使PSP1幅值增大、PSP2幅值减小
答案 B 据图分析,刺激后,突触a前膜释放的神经递质会使后膜电位增大,为兴奋性递质,突触b前膜释放的神经递质会使后膜电位下降,为抑制性递质,PSP1是突触a处的后膜Na+或Ca2+内流形成的,PSP2是突触b处的后膜K+外流或Cl-内流形成的,两者后膜的通透性都增大,PSP1和PSP2共同影响突触后神经元动作电位的产生,A、C错误,B正确;PSP1和PSP2的幅值是由膜两侧的离子浓度决定的,不会随神经递质的增多而增大或减小,D错误。
3.(2023山东,16,3分)(不定项)神经细胞的离子跨膜运输除受膜内外离子浓度差影响外,还受膜内外电位差的影响。已知神经细胞膜外的Cl-浓度比膜内高。下列说法正确的是( )
A.静息电位状态下,膜内外电位差一定阻止K+的外流
B.突触后膜的Cl-通道开放后,膜内外电位差一定增大
C.动作电位产生过程中,膜内外电位差始终促进Na+的内流
D.静息电位→动作电位→静息电位过程中,不会出现膜内外电位差为0的情况
答案 A 静息电位状态时,膜两侧存在内负外正的电位差,K+带正电荷,外流会受到膜内外电位梯度的阻力,A正确;突触后膜的Cl-通道开放后,Cl-内流使内负外正的电位差增大,但其他离子也会影响膜内外电位差,B错误;动作电位产生过程中,膜内外电位逆转为内正外负,Na+的内流变成逆电位差的转运,电位差会阻止Na+的内流,C错误;静息电位→动作电位→静息电位的过程中,膜两侧电位差由内负外正逆转为内正外负又逆转回内负外正,该过程中必然存在膜内外电位差为0的时刻,D错误。
4.(2022广东,15,4分)研究多巴胺的合成和释放机制,可为帕金森病(老年人多发性神经系统疾病)的防治提供实验依据。最近研究发现在小鼠体内多巴胺的释放可受乙酰胆碱调控,该调控方式通过神经元之间的突触联系来实现(如图)。据图分析,下列叙述错误的是 ( )
A.乙释放的多巴胺可使丙膜的电位发生改变
B.多巴胺可在甲与乙、乙与丙之间传递信息
C.从功能角度看,乙膜既是突触前膜也是突触后膜
D.乙膜上的乙酰胆碱受体异常可能影响多巴胺的释放
答案 B 由图可知,甲释放的乙酰胆碱作用于乙(突触后膜)的乙酰胆碱受体,使乙的膜电位改变,乙(突触前膜)释放多巴胺,作用于丙,使丙的膜电位改变,A、C正确;乙释放的多巴胺只能作用于丙,在乙、丙之间传递信息,B错误;由题意可知,多巴胺的释放可受乙酰胆碱调控,若乙膜上的乙酰胆碱受体异常,可影响甲、乙之间传递信息,从而影响乙释放多巴胺,D正确。
5.(2022浙江6月选考,24,2分)听到上课铃声,同学们立刻走进教室,这一行为与神经调节有关。该过程中,其中一个神经元的结构及其在某时刻的电位如图所示。
下列关于该过程的叙述,错误的是 ( )
A.此刻①处Na+内流,②处K+外流,且两者均不需要消耗能量
B.①处产生的动作电位沿神经纤维传播时,波幅一直稳定不变
C.②处产生的神经冲动,只能沿着神经纤维向右侧传播出去
D.若将电表的两个电极分别置于③、④处,指针会发生偏转
答案 A ①处K+外流,②处Na+内流,A错误;动作电位沿着神经纤维传播时,其电位变化总是一样的,不会随传播距离的增加而衰减,即波幅一直稳定不变,B正确;在机体内发生的反射活动中,兴奋只能从感受器开始沿反射弧单向传播,在一个神经元内由树突(或胞体)向轴突末梢传播,即只能向右侧传播,C正确;若将电表的两个电极分别置于③、④处,兴奋接下来会传至④处,两电极出现电位差,指针发生偏转,D正确。
6.(2022山东,9,2分)药物甲、乙、丙均可治疗某种疾病,相关作用机制如图所示,突触前膜释放的递质为去甲肾上腺素(NE)。下列说法错误的是 ( )
A.药物甲的作用导致突触间隙中的NE增多
B.药物乙抑制NE释放过程中的正反馈
C.药物丙抑制突触间隙中NE的回收
D.NE-β受体复合物可改变突触后膜的离子通透性
答案 B 根据题图信息可以看出,突触前膜释放的NE的去向:与突触前膜的α受体结合、与突触后膜的β受体结合、被突触前膜的转运蛋白回收到突触前神经元内、在突触间隙被灭活。药物甲可抑制单胺氧化酶灭活NE,导致突触间隙中NE的量增多,A正确。药物丙抑制了突触前膜上NE转运蛋白的作用,导致突触间隙中NE的回收受到抑制,从而使突触间隙中NE的量增多,C正确。由以上分析可知,药物甲、丙的作用可使突触间隙中NE的量增多,由题干信息“药物甲、乙、丙均可治疗某种疾病”可知,药物乙抑制α受体的作用后也应使突触间隙中NE的量增加,分析题图可知,NE与突触前膜的α受体结合后,应能抑制NE的释放,这属于负反馈调节,B错误。NE与突触后膜上的β受体结合后,可改变突触后膜的离子通透性,引发突触后膜电位变化,D正确。
7.(2022全国乙,3,6分)运动神经元与骨骼肌之间的兴奋传递过度会引起肌肉痉挛,严重时会危及生命。下列治疗方法中合理的是 ( )
A.通过药物加快神经递质经突触前膜释放到突触间隙中
B.通过药物阻止神经递质与突触后膜上特异性受体结合
C.通过药物抑制突触间隙中可降解神经递质的酶的活性
D.通过药物增加突触后膜上神经递质特异性受体的数量
答案 B A、C、D选项的治疗方法均会促进运动神经元与骨骼肌之间的兴奋传递,从而加重肌肉痉挛,故A、C、D错误;通过药物阻止神经递质与突触后膜上特异性受体结合,可减少运动神经元与骨骼肌之间的兴奋传递,从而治疗人体肌肉痉挛,B正确。
名师点睛 兴奋在神经元之间的传递过程:兴奋到达突触前膜所在神经元的轴突末梢,引起突触小泡向突触前膜移动并释放神经递质到突触间隙,神经递质与突触后膜上的相应受体结合,引起突触后膜电位发生变化,之后神经递质与受体分开被降解或回收进细胞。审读题目可知,阻止兴奋传递,可避免运动神经元与骨骼肌之间的兴奋传递过度,达到治疗肌肉痉挛的目的。
8.(2022北京,8,2分)神经组织局部电镜照片如图。下列有关突触的结构及神经元间信息传递的叙述,不正确的是 ( )
A.神经冲动传导至轴突末梢,可引起1与突触前膜融合
B.1中的神经递质释放后可与突触后膜上的受体结合
C.2所示的细胞器可以为神经元间的信息传递供能
D.2所在的神经元只接受1所在的神经元传来的信息
答案 D 图中1为突触小泡,当神经冲动传至轴突末梢时,突触小泡受到刺激,会向突触前膜移动并与它融合,将神经递质释放到突触间隙,神经递质经扩散通过突触间隙,与突触后膜上的相关受体结合,引起突触后膜上离子通道发生变化,引发电位变化,A、B正确;2为突触后膜所在神经元中的线粒体,可为神经元间的信息传递提供能量,C正确;据图可知,2所在的神经元可与周围的多个神经元之间形成联系,因此其不只接受1所在的神经元传来的信息,D错误。
9.(2021浙江6月选考,12,2分)下列关于神经元的叙述,正确的是( )
A.每个神经元都有一个轴突和多个树突
B.每个神经元的轴突和树突外周都包有髓鞘
C.同一个神经元所有部位的表面膜特性都相同
D.运动神经元产生的神经冲动可沿轴突传送给效应器答案 D 大多神经元都有一个轴突和多个树突,双极神经元含一个树突和一个轴突,A错误。髓鞘是包裹在神经元轴突外面的膜结构,树突外无髓鞘包裹,B错误。神经元的细胞膜是可兴奋膜,它在接受刺激、传导神经冲动和信息处理中起重要作用,其细胞膜的性质主要取决于膜蛋白的种类、数量、结构和功能,同一个神经元的不同部位分布的膜蛋白不一定相同,所以同一个神经元所有部位的表面膜特性不一定相同,C错误。运动神经元又称传出神经元,其产生的神经冲动可沿轴突传送给效应器,D正确。
10.(2021辽宁,16,3分)短期记忆与脑内海马区神经元的环状联系有关,如图表示相关结构。信息在环路中循环运行,使神经元活动的时间延长。下列有关此过程的叙述错误的是( )
A.兴奋在环路中的传递顺序是①→②→③→①
B.M处的膜电位为外负内正时,膜外的Na+浓度高于膜内
C.N处突触前膜释放抑制性神经递质
D.神经递质与相应受体结合后,进入突触后膜内发挥作用
答案 ACD 兴奋在神经元之间的传递是单向的,神经递质只能由突触前膜释放,作用于突触后膜,兴奋在环路中的传递顺序应该是①→②→③→②,A错误;M处兴奋时,钠离子通道打开,钠离子顺浓度梯度内流,导致M处产生动作电位,电位是外负内正,此时膜外钠离子浓度仍然高于膜内,B正确;M点兴奋,兴奋传至N处,N处释放兴奋性神经递质,促进神经元③释放兴奋性神经递质,从而延长神经元活动,C错误;一般情况下,神经递质由突触前膜释放后,与突触后膜上受体结合,导致离子通道打开,离子内流,其发挥作用以后会被灭活或回收,不会进入突触后膜,D错误。
11.(2021湖北,17,2分)正常情况下,神经细胞内K+浓度约为150 mmol·L-1,细胞外液约为4 mmol·L-1。细胞膜内外K+浓度差与膜静息电位绝对值呈正相关。当细胞膜电位绝对值降低到一定值(阈值)时,神经细胞兴奋。离体培养条件下,改变神经细胞培养液的KCl浓度进行实验。下列叙述正确的是( )
A.当K+浓度为4 mmol·L-1时,K+外流增加,细胞难以兴奋
B.当K+浓度为150 mmol·L-1时,K+外流增加,细胞容易兴奋
C.K+浓度增加到一定值(<150 mmol·L-1),K+外流增加,导致细胞兴奋
D.K+浓度增加到一定值(<150 mmol·L-1), K+外流减少,导致细胞兴奋
答案 D 当培养液中K+浓度为4 mmol·L-1时,细胞能正常兴奋,A错误;当培养液中K+浓度为150 mmol·L-1时,细胞膜内外K+浓度差约为0,K+外流减少,B错误;培养液中K+浓度增加到一定值(<150 mmol·L-1),细胞膜内外K+浓度差降低,K+外流减少,若细胞膜电位绝对值降低到阈值时,可导致细胞兴奋,C错误、D正确。
12.(2021天津,2,4分)突触小泡可从细胞质基质摄取神经递质。当兴奋传导至轴突末梢时,突触小泡释放神经递质到突触间隙。下图中不能检测出神经递质的部位是( )
A.① B.② C.③ D.④
答案 D 由题干“突触小泡可从细胞质基质摄取神经递质。当兴奋传导至轴突末梢时,突触小泡释放神经递质到突触间隙”可判断①②③中可检测出神经递质,A、B、C不符合题意;神经递质与突触后膜上的受体特异性结合,但不会进入后突触神经元,因此④处无神经递质,D符合题意。
13.(2021全国乙,4,6分)在神经调节过程中,兴奋会在神经纤维上传导和神经元之间传递。下列有关叙述错误的是( )
A.兴奋从神经元的细胞体传导至突触前膜,会引起Na+外流
B.突触前神经元兴奋可引起突触前膜释放乙酰胆碱
C.乙酰胆碱是一种神经递质,在突触间隙中经扩散到达突触后膜
D.乙酰胆碱与突触后膜受体结合,引起突触后膜电位变化
答案 A 兴奋从神经元的细胞体传导至突触前膜属于兴奋在神经元上的传导,传导过程中兴奋传导到的部位会发生Na+内流,产生动作电位,A错误;突触前神经元兴奋,可引起突触小体中突触小泡内神经递质(乙酰胆碱)的释放,B正确;乙酰胆碱是一种常见的兴奋性递质,乙酰胆碱经突触前膜释放后进入突触间隙,在突触间隙的组织液中经扩散到达突触后膜,C正确;乙酰胆碱与突触后膜上相应的受体结合后,引起突触后膜外的Na+内流,突触后膜的膜电位由外正内负变为外负内正,产生兴奋,D正确。
14.(2021湖南,11,2分)研究人员利用电压钳技术改变枪乌贼神经纤维膜电位,记录离子进出细胞引发的膜电流变化,结果如图所示,图a为对照组,图b和图c分别为通道阻断剂TTX、TEA处理组。下列叙述正确的是( )
图a
图b
图c
A.TEA处理后,只有内向电流存在
B.外向电流由Na+通道所介导
C.TTX处理后,外向电流消失
D.内向电流结束后,神经纤维膜内Na+浓度高于膜外
答案 A 对比图a和图c可知,TEA处理阻断钾通道后,只有内向电流存在,A正确;对比图a和图b可知,TTX处理阻断钠通道后,只有外向电流存在,再结合图c,可推断外向电流由K+通道所介导,而内向电流由Na+通道所介导,B、C错误;内向电流(Na+内流)结束后,神经纤维膜外Na+浓度仍高于膜内,D错误。
15.(2021河北,11,2分)关于神经细胞的叙述,错误的是( )
A.大脑皮层言语区的H区神经细胞受损伤,患者不能听懂话
B.主动运输维持着细胞内外离子浓度差,这是神经细胞形成静息电位的基础
C.内环境K+浓度升高,可引起神经细胞静息状态下膜电位差增大
D.谷氨酸和一氧化氮可作为神经递质参与神经细胞的信息传递
答案 C 大脑皮层言语区有H区(听)、S区(说)、V区(看)、W区(写),若H区神经细胞受损,患者不能听懂话,A正确;神经细胞一般是膜内K+浓度高、膜外Na+浓度高,这种细胞内外离子浓度差是由Na+-K+泵通过主动运输维持的,是膜电位形成的基础,如由于膜内K+浓度高,K+外流,因此形成了内负外正的静息电位,B正确;若内环境K+浓度升高,则神经细胞膜内外的K+浓度差减小,K+外流减少,故静息状态下的膜电位差减小,C错误;神经递质种类很多,谷氨酸和一氧化氮可以作为神经递质参与神经细胞的信息传递,D正确。
16.(2021浙江1月选考,23,2分)当人的一只脚踩到钉子时,会引起同侧腿屈曲和对侧腿伸展,使人避开损伤性刺激,又不会跌倒。其中的反射弧示意图如图,“+”表示突触前膜的信号使突触后膜兴奋,“-”表示突触前膜的信号使突触后膜受抑制。甲~丁是其中的突触,在上述反射过程中,甲~丁突触前膜信号对突触后膜的作用依次为( )
A.+、-、+、+ B.+、+、+、+
C.-、+、-、+ D.+、-、+、-
答案 A 根据上述信息,对题图进行分析如图:
17.(2020山东,7,2分)听毛细胞是内耳中的一种顶端具有纤毛的感觉神经细胞。声音传递到内耳中引起听毛细胞的纤毛发生偏转,使位于纤毛膜上的K+通道打开,K+内流而产生兴奋。兴奋通过听毛细胞底部传递到听觉神经细胞,最终到达大脑皮层产生听觉。下列说法错误的是( )
A.静息状态时纤毛膜外的K+浓度低于膜内
B.纤毛膜上的K+内流过程不消耗ATP
C.兴奋在听毛细胞上以电信号的形式传导
D.听觉的产生过程不属于反射
答案 A 根据题干信息“声音传递到内耳中引起听毛细胞的纤毛发生偏转,使位于纤毛膜上的K+通道打开,K+内流而产生兴奋”推测静息状态时,纤毛膜外的K+浓度高于膜内,A错误;纤毛膜上的K+内流过程是顺浓度梯度进行的,属于协助扩散,不消耗ATP,B正确;“K+内流而产生兴奋”,使兴奋部位与未兴奋部位形成了局部电流,兴奋在听毛细胞上以电信号的形式传导,C正确;由于反射活动需要经过完整的反射弧,而听觉形成的过程中不涉及大脑皮层传出兴奋和效应器的反应,因而听觉的产生过程不属于反射,D正确。
18.(2020江苏单科,13,2分)如图为部分神经兴奋传导通路示意图,相关叙述正确的是( )
A.①、②或④处必须受到足够强度的刺激才能产生兴奋
B.①处产生的兴奋可传导到②和④处,且电位大小相等
C.通过结构③,兴奋可以从细胞a传递到细胞b,也能从细胞b传递到细胞a
D.细胞外液的变化可以影响①处兴奋的产生,但不影响③处兴奋的传递
答案 A 兴奋的产生需要受到刺激且达到一定的阈值,①②④均位于神经纤维上,要受到足够强度的刺激才能产生兴奋,A正确;若神经元a产生的是兴奋性神经递质,①处产生的兴奋可以通过神经纤维传导到②处,再经过突触传递到下一神经元④处,但两神经元的细胞膜对Na+、K+的通透能力不一定相同,故②处和④处的电位大小不一定相等,B错误;结构③为突触,在突触处,兴奋只能从突触前膜传递到突触后膜,而不能从突触后膜传递到突触前膜,C错误;突触间隙内的液体为组织液,属于细胞外液,因而细胞外液的变化可以影响③处兴奋的传递,D错误。
19.(2020江苏单科,14,2分)天冬氨酸是一种兴奋性递质,下列叙述错误的是( )
A.天冬氨酸分子由C、H、O、N、S五种元素组成
B.天冬氨酸分子一定含有氨基和羧基
C.作为递质的天冬氨酸可贮存在突触囊泡内,并能批量释放至突触间隙
D.作为递质的天冬氨酸作用于突触后膜,可增大细胞膜对Na+的通透性
答案 A 构成大分子蛋白质的基本单位是氨基酸,天冬氨酸是其中的一种,除了氨基、羧基、—H连在天冬氨酸的中心碳原子上,还有R基(—CH2COOH)连在天冬氨酸的中心碳原子上,所以天冬氨酸不含S元素,A错误,B正确;天冬氨酸是一种兴奋性神经递质,其位于突触前膜的突触小泡内,当神经冲动传至突触小体时,可引起突触小泡在突触前膜处释放神经递质天冬氨酸,天冬氨酸进入突触间隙,作用于突触后膜上的受体,使突触后膜对Na+的通透性增加,Na+迅速内流,引起下一个神经元的兴奋,C、D正确。
20.(2020浙江7月选考,20,2分)分布有乙酰胆碱受体的神经元称为胆碱能敏感神经元,它普遍存在于神经系统中,参与学习与记忆等调节活动。乙酰胆碱酯酶催化乙酰胆碱的分解,药物阿托品能阻断乙酰胆碱与胆碱能敏感神经元的相应受体结合。下列说法错误的是( )
A.乙酰胆碱分泌量和受体数量改变会影响胆碱能敏感神经元发挥作用
B.使用乙酰胆碱酯酶抑制剂可抑制胆碱能敏感神经元受体发挥作用
C.胆碱能敏感神经元的数量改变会影响学习与记忆等调节活动
D.注射阿托品可影响胆碱能敏感神经元所引起的生理效应
答案 B 乙酰胆碱能与乙酰胆碱受体特异性结合,使胆碱能敏感神经元兴奋,乙酰胆碱分泌量和受体数量改变会影响两者的结合概率,从而影响胆碱能敏感神经元发挥作用,A正确;乙酰胆碱酯酶抑制剂能抑制乙酰胆碱酯酶对乙酰胆碱分解的催化作用,乙酰胆碱会一直与受体结合,使胆碱能敏感神经元持续兴奋,B错误;根据题意,胆碱能敏感神经元参与学习与记忆等调节活动,可知胆碱能敏感神经元的数量会影响学习与记忆等调节活动,C正确;阿托品能阻断乙酰胆碱与相应受体结合,导致胆碱能敏感神经元不能产生兴奋而失去调节功能,D正确。
21.(2019海南单科,15,2分)下列与反射弧有关的叙述,错误的是( )
A.效应器的活动包括腺体分泌和肌肉收缩
B.效应器的结构受到损伤会影响反射活动的完成
C.突触后膜上有能与神经递质特异性结合的受体
D.同一反射弧中感受器的兴奋与效应器的反应同时发生
答案 D 效应器由传出神经末梢及其支配的肌肉或腺体组成,故效应器的活动包括腺体分泌和肌肉收缩,A正确;反射的完成需要经过完整的反射弧,效应器的结构受到损伤会影响反射活动的完成,B正确;突触后膜上有能与神经递质特异性结合的受体,神经递质通过与突触后膜上的受体结合引起突触后神经元的兴奋或抑制,C正确;同一反射弧中感受器先兴奋,效应器后反应,D错误。
22.(2018浙江4月选考,20,2分)下列关于人体膝(跳)反射的叙述,错误的是( )
A.若脊髓受损,刺激传出神经后伸肌也会收缩
B.刺激传入神经元,抑制性中间神经元不会兴奋
C.膝(跳)反射的反射弧中,传出神经元的胞体位于脊髓中
D.若膝盖下方的皮肤破损,刺激肌梭后也能发生膝(跳)反射
答案 B 本题通过人体膝跳反射,考查了生命观念素养中的结构与功能观和科学思维素养中的模型与建模、演绎与推理要素。若脊髓受损即反射(神经)中枢受损,会导致反射弧不完整,由于刺激的是传出神经,兴奋能够传递到效应器,伸肌会发生收缩,A正确。刺激传入神经元,会使抑制性中间神经元兴奋,并释放抑制性神经递质使下一个神经元被抑制,B错误。据题图可知,膝跳反射的反射弧中,传出神经元的胞体位于脊髓中,C正确。皮肤的破损并不会破坏膝跳反射反射弧的完整性,故刺激肌梭后反射仍能正常发生,D正确。
23.(2018天津理综,1,6分)下列关于人体神经调节的叙述,正确的是( )
A.结构基础是反射弧 B.不受激素影响
C.不存在信息传递 D.能直接消灭入侵病原体
答案 A 本题以神经系统的结构与功能为信息载体,考查利用所学知识,对生物问题进行解释判断的能力;试题通过分析与神经系统结构、功能有关的表述,体现了对科学思维素养中归纳与概括要素的考查。人体神经调节的基本方式是反射,完成反射的结构基础是反射弧,A正确;神经调节可受激素影响,如甲状腺激素可提高神经系统的兴奋性,B错误;神经元之间可通过神经递质传递信息,C错误;直接消灭入侵病原体的系统是免疫系统,D错误。
24.(2018江苏单科,11,2分)如图是某神经纤维动作电位的模式图,下列叙述正确的是( )
A.K+的大量内流是神经纤维形成静息电位的主要原因
B.bc段Na+大量内流,需要载体蛋白的协助,并消耗能量
C.cd段Na+通道多处于关闭状态,K+通道多处于开放状态
D.动作电位大小随有效刺激的增强而不断加大
答案 C 本题以膜电位变化的数学模型为信息载体,考查考生获取信息及运用能力;试题通过对神经元静息电位与动作电位的转换过程的分析,体现了对科学思维素养中模型与建模要素的考查。K+的外流是神经纤维形成静息电位的主要原因,A错误;bc段Na+大量内流,运输方式是协助扩散,需要载体的协助,但不消耗能量,B错误;cd段为恢复静息电位阶段,Na+通道多处于关闭状态,K+通道多处于开放状态,C正确;神经纤维产生动作电位需要达到阈值的刺激,在受到阈值以上刺激时,动作电位的大小不再随刺激强度增大而加大,D错误。
思维点拨 本题以膜电位变化示意图为背景,考查学生对兴奋传导知识的掌握和识图获取信息的能力,主要涉及静息电位的产生、离子跨膜运输的方式、动作电位的大小和刺激强度的关系。
25.(2017海南单科,13,2分)下列与人体神经调节有关的叙述,错误的是( )
A.缺氧不影响肽类神经递质的合成与释放
B.肌肉细胞的细胞膜上有神经递质的受体
C.神经纤维上的电信号可引起突触前膜释放神经递质
D.神经递质可将突触前神经元的兴奋传递给突触后神经元
答案 A 肽类神经递质的合成与释放(方式是胞吐)都需要消耗能量,缺氧会影响肽类神经递质的合成与释放,A错误;效应器是由神经末梢及其支配的肌肉或腺体等组成,说明肌肉细胞的细胞膜上有神经递质的受体,B正确;神经纤维上的电信号可引起突触前膜释放神经递质,在突触处实现电信号→化学信号的转变,C正确;神经递质可将突触前神经元的兴奋传递给突触后神经元,从而实现电信号→化学信号→电信号的转变,完成兴奋的传递,D正确。
26.(2017江苏单科,8,2分)如图为突触结构示意图,下列相关叙述正确的是( )
A.结构①为神经递质与受体结合提供能量
B.当兴奋传导到③时,膜电位由内正外负变为内负外正
C.递质经②的转运和③的主动运输释放至突触间隙
D.结构④膜电位的变化与其选择透过性密切相关
答案 D 本题考查神经冲动的传导和传递的相关知识。由突触结构示意图可知,①、②、③、④分别为线粒体、突触小泡、突触前膜、突触后膜。结构①线粒体可为神经递质分泌到突触间隙提供能量,递质与受体结合不消耗能量,A错误;当兴奋传导到突触前膜时,膜电位由静息电位变为动作电位,即由内负外正变为外负内正,B错误;神经递质通过突触小泡的转运,以胞吐的方式释放到突触间隙,C错误;突触后膜膜电位的变化,与其对K+、Na+等离子的选择透过性密切相关,D正确。
27.(2016课标全国Ⅰ,4,6分)下列与神经细胞有关的叙述,错误的是( )
A.ATP能在神经元线粒体的内膜上产生
B.神经递质在突触间隙中的移动消耗ATP
C.突触后膜上受体蛋白的合成需要消耗ATP
D.神经细胞兴奋后恢复为静息状态消耗ATP
答案 B 线粒体内膜上进行有氧呼吸的第三阶段,可产生ATP,A正确;突触间隙中的组织液属于细胞外液,神经递质通过扩散的方式在突触间隙中移动,不需要消耗ATP,B错误;蛋白质的合成需要消耗ATP,C正确;神经细胞兴奋后恢复为静息状态的过程中有K+外流和排钠吸钾(钠钾泵)过程,其中后者为逆浓度梯度运输,需要消耗ATP,D正确。
易错警示 动作电位的形成主要与Na+内流(顺浓度梯度)有关;静息电位的形成主要与K+外流(顺浓度梯度)有关;神经细胞为了维持膜外钠离子浓度高和膜内钾离子浓度高的浓度差,需要依靠钠钾泵进行排钠吸钾过程(逆浓度梯度)。
28.(2015江苏单科,18,2分)如图表示当有神经冲动传到神经末梢时,神经递质从突触小泡内释放并作用于突触后膜的机制,下列叙述错误的是( )
A.神经递质存在于突触小泡内可避免被细胞内其他酶系破坏
B.神经冲动引起神经递质的释放,实现了由电信号向化学信号的转变
C.神经递质与受体结合引起突触后膜上相应的离子通道开放
D.图中离子通道开放后,Na+和Cl-同时内流
答案 D 本题主要考查神经冲动在突触处的传递机理的相关内容。神经递质存在于突触小泡内,可因突触小泡膜的保护而避免被细胞内水解酶等破坏,A正确;神经递质经突触前膜释放,实现电信号→化学信号的转变,B正确;根据题图可以看出,神经递质与突触后膜上受体结合可引起突触后膜上相应离子通道开放,C正确;若神经递质为兴奋性神经递质,则引起Na+通道开放,Na+内流,若神经递质为抑制性神经递质,则引起Cl-内流,D错误。
知识拓展 离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输中的离子通路称为离子通道,主动运输中的离子载体称为离子泵。
29.(2014海南单科,15,2分)当快速牵拉骨骼肌时,会在d处记录到电位变化过程。据图判断下列相关叙述,错误的是( )
A.感受器位于骨骼肌中
B.d处位于传出神经上
C.从a到d构成一个完整的反射弧
D.牵拉骨骼肌时,c处可检测到神经递质
答案 C 由图中突触的结构和神经节所在的位置可知,b为传入神经,当快速牵拉骨骼肌时,会在d处记录到电位变化,感受器位于骨骼肌中,A正确;d处位于传出神经上,B正确;从a到d没有效应器,不能构成一个完整的反射弧,C错误;牵拉骨骼肌时,会在d处记录到电位变化过程,说明有神经冲动的传递,c处可检测到神经递质,D正确。
30.(2014安徽理综,6,6分)给狗喂食会引起唾液分泌,但铃声刺激不会。若每次在铃声后即给狗喂食,这样多次结合后,狗一听到铃声就会分泌唾液。下列叙述正确的是( )
A.大脑皮层没有参与铃声刺激引起唾液分泌的过程
B.食物引起味觉和铃声引起唾液分泌属于不同的反射
C.铃声和喂食反复结合可促进相关的神经元之间形成新的联系
D.铃声引起唾液分泌的反射弧和食物引起唾液分泌的反射弧相同
答案 C 由题干可知,狗听到铃声分泌唾液属于条件反射,反射中枢在大脑皮层,A错误;食物引起味觉不属于反射,B错误;铃声和喂食反复结合可以促进相关神经元之间形成新的联系,C正确;食物引起唾液分泌属于非条件反射,故与铃声引起唾液分泌的反射弧不同,D错误。
31.(2013大纲全国,1,6分)关于神经兴奋的叙述,错误的是( )
A.刺激神经纤维中部,产生的兴奋沿神经纤维向两侧传导
B.兴奋在神经纤维上的传导方向是由兴奋部位至未兴奋部位
C.神经纤维的兴奋以局部电流的方式在神经元之间单向传递
D.在神经纤维膜外,局部电流的方向与兴奋传导的方向相反
答案 C 本题主要考查兴奋的传导和传递的相关知识。刺激神经纤维中部,产生的兴奋以局部电流的形式由兴奋部位传至未兴奋部位即由兴奋部位沿神经纤维向两侧传导;在神经纤维膜外,局部电流的方向与兴奋传导的方向相反,膜内局部电流的方向与兴奋传导的方向相同;兴奋在神经元间是以神经递质(化学信号)形式单向传递的。
32.(2012海南单科,15,2分)关于人体神经细胞的叙述,正确的是( )
A.神经细胞轴突末梢可形成多个突触小体
B.兴奋通过神经递质在突触处进行双向传递
C.神经细胞外Na+内流是产生静息电位的基础
D.静息状态的神经细胞膜两侧的电位表现为内正外负
答案 A 本题主要考查兴奋产生的机理、兴奋传导的机制等方面的知识。神经细胞轴突末梢可形成多个突触小体,与多个神经元的细胞体或树突构成多个突触,A正确。 由于神经递质只能由突触前膜释放,作用于突触后膜,故兴奋通过神经递质在突触处只能单向传递。神经细胞内K+外流是产生静息电位的基础。静息状态的神经细胞膜两侧的电位表现为外正内负。
33.(2012课标全国,1,6分)下列关于膝跳反射的叙述,错误的是( )
A.反射活动由一定的刺激引起
B.反射活动中兴奋在突触处双向传递
C.反射活动的发生需要反射弧结构完整
D.反射活动中需要神经递质参与兴奋的传递
答案 B 本题以膝跳反射为例考查反射与反射弧的关系、兴奋传递的特点等知识。感受器在一定的刺激下产生兴奋,通过反射弧的不同环节逐级传递,最终完成反射活动,故反射弧任一环节受损都会导致反射活动不能完成,A、C正确;突触前膜释放的神经递质与突触后膜上特异性受体结合,完成兴奋在神经元间的传递,D正确;因神经递质只能由突触前膜释放,作用于突触后膜,故兴奋在突触处只能单向传递,B错误。
34.(2011浙江理综,3,6分)在离体实验条件下单条神经纤维的动作电位示意图如下。下列叙述正确的是( )
A.a-b段的Na+内流是需要消耗能量的
B.b-c段的Na+外流是不需要消耗能量的
C.c-d段的K+外流是不需要消耗能量的
D.d-e段的K+内流是需要消耗能量的
答案 C 在神经纤维膜上有钠离子通道和钾离子通道。当神经纤维某处受到刺激时会使钠离子通道开放,于是膜外钠离子在短期内大量流入膜内(顺浓度梯度运输,不消耗能量),造成了内正外负的反极化现象(a~c段)。但在很短的时期内钠离子通道又重新关闭,钾离子通道随即开放,钾离子又很快流出膜外(顺浓度梯度运输,不消耗能量),使得膜电位又恢复到原来的外正内负的状态(c~e段)。故C项正确。
35.(2023北京,17,12分)细胞膜的选择透过性与细胞膜的静息电位密切相关。科学家以哺乳动物骨骼肌细胞为材料,研究了静息电位形成的机制。
(1)骨骼肌细胞膜的主要成分是 ,膜的基本支架是 。
(2)假设初始状态下,膜两侧正负电荷均相等,且膜内K+浓度高于膜外。在静息电位形成过程中,当膜仅对K+具有通透性时,K+顺浓度梯度向膜外流动,膜外正电荷和膜内负电荷数量逐步增加,对K+进一步外流起阻碍作用,最终K+跨膜流动达到平衡,形成稳定的跨膜静电场,此时膜两侧的电位表现是 。K+静电场强度只能通过公式“K+静电场强度(mV)=60×lg”计算得出。
(3)骨骼肌细胞处于静息状态时,实验测得膜的静息电位为-90 mV,膜内、外K+浓度依次为155 mmol/L和4 mmol/L(lg=-1.59),此时没有K+跨膜净流动。
①静息状态下,K+静电场强度为 mV,与静息电位实测值接近,推测K+外流形成的静电场可能是构成静息电位的主要因素。
②为证明①中的推测,研究者梯度增加细胞外K+浓度并测量静息电位。如果所测静息电位的值 ,则可验证此假设。
答案 (1)脂质和蛋白质 磷脂双分子层 (2)外正内负 (3)①-95.4 ②变小
解析 (1)骨骼肌细胞膜的主要成分为脂质和蛋白质,膜的基本支架是磷脂双分子层。(2)K+外流形成静息电位,细胞膜两侧的电位表现为外正内负。(3)K+静电场强度(mV)=60×lg=60×lg=60×(-1.59)=-95.4(mV),即静息状态下,K+静电场强度为-95.4 mV。依据公式可知,增加细胞外K+浓度求出的值的绝对值变小,若测得静息电位的值也变小(正负号不代表大小,代表方向),则可验证此假设。
36.(2023浙江1月选考,21,9分)我们说话和唱歌时,需要有意识地控制呼吸运动的频率和深度,这属于随意呼吸运动;睡眠时不需要有意识地控制呼吸运动,人体仍进行有节律性的呼吸运动,这属于自主呼吸运动。人体呼吸运动是在各级呼吸中枢相互配合下进行的,呼吸中枢分布在大脑皮层、脑干和脊髓等部位。体液中的O2、CO2和H+浓度变化通过刺激化学感受器调节呼吸运动。回答下列问题:
(1)人体细胞能从血浆、 和淋巴等细胞外液获取O2,这些细胞外液共同构成了人体的内环境。内环境的相对稳定和机体功能系统的活动,是通过内分泌系统、 系统和免疫系统的调节实现的。
(2)自主呼吸运动是通过反射实现的,其反射弧包括感受器、 和效应器。化学感受器能将O2、CO2和H+浓度等化学信号转化为 信号。神经元上处于静息状态的部位,受刺激后引发Na+ 而转变为兴奋状态。
(3)人屏住呼吸一段时间后,动脉血中的CO2含量增大, pH变 ,CO2含量和pH的变化共同引起呼吸加深加快。还有实验发现,当吸入气体中CO2浓度过大时,会出现呼吸困难、昏迷等现象,原因是CO2浓度过大导致呼吸中枢 。
(4)大脑皮层受损的“植物人”仍具有节律性的自主呼吸运动;哺乳动物脑干被破坏,或脑干和脊髓间的联系被切断,呼吸停止。上述事实说明,自主呼吸运动不需要位于 的呼吸中枢参与,自主呼吸运动的节律性是位于 的呼吸中枢产生的。
答案 (1)组织液 神经 (2)传入神经(元)、神经中枢、传出神经(元) 电 内流 (3)小 受抑制 (4)大脑皮层 脑干
解析 (1)内环境主要包括血浆、组织液和淋巴等。内环境的相对稳定和机体功能系统的活动是通过神经—体液—免疫调节实现的。(2)反射弧包括感受器、传入神经(元)、神经中枢、传出神经(元)和效应器五个部分。化学感受器能接受O2、CO2、H+浓度等化学信号的刺激,并转化为电信号。神经元上处于静息状态的部位受到刺激后,该部位的细胞膜对Na+的通透性提高,Na+内流而转变为兴奋状态。(3)动脉血中CO2含量增大会导致pH降低。当吸入气体中CO2浓度过大时,会导致血液中氧和CO2的比例异常,无法保证人体正常生命活动,从而出现呼吸困难、昏迷等现象,原因是CO2浓度过大导致呼吸中枢被抑制,无法发挥正常的调节作用。(4)根据题中的信息“大脑皮层受损……的自主呼吸运动”可推断自主呼吸运动不需要位于大脑皮层的呼吸中枢参与;根据题中信息“脑干被破坏,或脑干和脊髓间的联系被切断,呼吸停止”可推断自主呼吸运动的节律性是位于脑干的呼吸中枢产生的。
37.(2023湖北,21,16分)我国科学家研制出的脊髓灰质炎减毒活疫苗,为消灭脊髓灰质炎作出了重要贡献。某儿童服用含有脊髓灰质炎减毒活疫苗的糖丸后,其血清抗体浓度相对值变化如图所示。
回答下列问题:
(1)该疫苗保留了脊髓灰质炎病毒的 。
(2)据图判断,该疫苗成功诱导了机体的 免疫反应,理由是 。
(3)研究发现,实验动物被脊髓灰质炎病毒侵染后,发生了肢体运动障碍。为判断该动物的肢体运动障碍是否为脊髓灰质炎病毒直接引起的骨骼肌功能损伤所致,以电刺激的方法设计实验,实验思路是 ,预期实验结果和结论是 。
(4)若排除了脊髓灰质炎病毒对该动物骨骼肌的直接侵染作用,确定病毒只侵染了脊髓灰质前角(图中部位①)。刺激感染和未感染脊髓灰质炎病毒的动物的感受器,与未感染动物相比,感染动物的神经纤维②上的信息传导变化是: ,神经—肌肉接头部位③处的信息传递变化是: 。
答案 (1)抗原物质 (2)体液 儿童服用糖丸后,其血清中相应抗体浓度在一段时间内明显增加,而抗体是体液免疫调节产生的主要物质 (3)将正常的实验动物随机平均分成两组,一组不做处理作为对照组,另一组用脊髓灰质炎病毒侵染作为实验组,一段时间后,在相同条件下,取出两组的骨骼肌细胞,电刺激骨骼肌细胞,观察其收缩情况 若对照组和实验组的骨骼肌均发生收缩,且情况一致,则说明脊髓灰质炎病毒没有直接损伤骨骼肌的功能;若对照组骨骼肌正常收缩,而实验组骨骼肌无法正常收缩,则说明脊髓灰质炎病毒直接损伤了骨骼肌的功能 (4)无电信号的传导 无“电信号—化学信号—电信号”的转换
解析 (1)该疫苗是脊髓灰质炎病毒减毒后的生物制品,保留了脊髓灰质炎病毒的抗原物质,能激发机体发生免疫反应。(2)据图判断,儿童服用含有脊髓灰质炎减毒活疫苗的糖丸后,其血清中相应抗体浓度在一段时间内明显增加,而抗体是体液免疫调节产生的主要物质,说明该疫苗成功诱导了机体的体液免疫。(3)该实验的目的是探究肢体运动障碍是否为脊髓灰质炎病毒直接引起的骨骼肌功能损伤,所以自变量是动物是否感染脊髓灰质炎病毒,因变量是骨骼肌功能是否损伤,检测指标是电刺激后骨骼肌的收缩情况。实验思路及预期结果和结论详见答案。(4)脊髓灰质炎病毒损伤了图中部位①处,则刺激感受器,兴奋将无法从①处向下传递,所以神经纤维②(传出神经)上无法形成动作电位。与未感染动物相比,感染动物的③处(神经—肌肉接头)无“电信号—化学信号—电信号”的转换。
38.(2023湖南,18,12分)长时程增强(LTP)是突触前纤维受到高频刺激后,突触传递强度增强且能持续数小时至几天的电现象,与人的长时记忆有关。下图是海马区某侧支LTP产生机制示意图,回答下列问题:
(1)依据以上机制示意图,LTP的发生属于 (填“正”或“负”)反馈调节。
(2)若阻断NMDA受体作用,再高频刺激突触前膜,未诱发LTP,但出现了突触后膜电现象。据图推断,该电现象与 内流有关。
(3)为了探讨L蛋白的自身磷酸化位点(图中α位和β位)对L蛋白自我激活的影响,研究人员构建了四种突变小鼠甲、乙、丙和丁,并开展了相关实验,结果如表所示:
组别结果项目
正常 小鼠 甲 乙 丙 丁
α位突变为缬氨酸,该位点不发生自身磷酸化 α位突变为天冬氨酸,阻断Ca2+/钙调蛋白复合体与L蛋白结合 β位突变为丙氨酸,该位点不发生自身磷酸化 L蛋白编码基因缺失
L蛋白活性 + ++++ ++++ + -
高频刺激 有LTP 有LTP 无LTP 无LTP
注:“+”多少表示活性强弱,“-”表示无活性
据此分析:
①小鼠乙在高频刺激后 (填“有”或“无”)LTP现象,原因是 。
②α位的自身磷酸化可能对L蛋白活性具有 作用。
③在甲、乙和丁实验组中,无L蛋白β位自身磷酸化的组是 。
答案 (1)正 (2)Na+ (3)①无 小鼠丙与正常小鼠的L蛋白活性相同,但无LTP发生,说明β位的自身磷酸化是LTP发生的必要条件。而乙组α位的突变阻断了Ca2+/钙调蛋白复合体与L蛋白的结合,使α位和β位均不能发生自身磷酸化,故LTP不能发生 ②抑制 ③乙、丁
解析 (1)由题图可知,突触前膜释放的谷氨酸可作用于突触后膜上的NMDA受体和AMPA受体,分别促进突触后膜Ca2+和Na+内流,Ca2+进入突触后膜后可与钙调蛋白形成Ca2+/钙调蛋白复合体。Ca2+/钙调蛋白复合体一方面可促进未激活的L蛋白变构为激活的L蛋白,激活的L蛋白可作用于未激活的L蛋白,促进其变构得到更多激活的L蛋白,激活的L蛋白可增强AMPA受体的敏感性和招募新的AMPA嵌入膜中,从而促进突触后膜的Na+进一步内流;另一方面,Ca2+/钙调蛋白复合体可促进NO合成酶合成NO,NO可进一步增强突触前膜递质的释放,这两方面均可引起LTP的发生,属于正反馈调节。(2)阻断NMDA受体作用,谷氨酸不能与NMDA受体结合,不能引起Ca2+内流,进而不能诱发LTP,但谷氨酸仍可以与AMPA受体结合,促进Na+内流,从而出现突触后膜电现象。(3)①由题表信息可知,小鼠丙的L蛋白活性与正常小鼠相同,但小鼠丙无LTP发生,说明β位的自身磷酸化是LTP发生的必要条件,而小鼠乙α位的突变阻断了Ca2+/钙调蛋白复合体与L蛋白结合,使α和β位均不能发生自身磷酸化,所以小鼠乙在高频刺激后无LTP现象。②与正常小鼠相比,小鼠甲α位的突变使α位点不能发生自身磷酸化,但其L蛋白活性明显升高,说明α位的自身磷酸化可能对L蛋白活性具有抑制作用。③甲组小鼠α位突变后使α位不能发生自身磷酸化,但β位的自身磷酸化不受影响,有L蛋白β位自身磷酸化;乙组小鼠α位的突变阻断了Ca2+/钙调蛋白复合体与L蛋白结合,使α和β位均不能发生自身磷酸化,无L蛋白β位自身磷酸化;丁组小鼠的L蛋白编码基因缺失而不能合成L蛋白,即不存在β位,也无L蛋白β位自身磷酸化。
39.(2023全国乙,30,9分)人体心脏和肾上腺所受神经支配的方式如图所示。回答下列问题。
(1)神经元未兴奋时,神经元细胞膜两侧可测得静息电位。静息电位产生和维持的主要原因是 。
(2)当动脉血压降低时,压力感受器将信息由传入神经传到神经中枢,通过通路A和通路B使心跳加快。在上述反射活动中,效应器有 。通路A中,神经末梢释放的可作用于效应器并使其兴奋的神经递质是 。
(3)经过通路B调节心血管活动的调节方式有 。
答案 (1)K+外流 (2)传出神经末梢及其支配的心脏和肾上腺 去甲肾上腺素 (3)神经—体液调节
解析 (1)由于K+浓度胞内高于胞外,静息状态下,神经元细胞膜上的K+通道开放,K+外流,产生内负外正的静息电位。(2)由图可知,效应器为传出神经末梢及其支配的心脏和肾上腺,通路A作用于效应器的神经递质为去甲肾上腺素。(3)通路B中,兴奋通过反射弧传至肾上腺使之分泌肾上腺素,肾上腺素通过血液循环作用于心脏,这类通过神经影响激素的分泌,再由激素对机体功能实施调节的方式,称为神经—体液调节。
40.(2023广东,19,11分)神经肌肉接头是神经控制骨骼肌收缩的关键结构,其形成机制见图。神经末梢释放的蛋白A与肌细胞膜蛋白I结合形成复合物,该复合物与膜蛋白M结合触发肌细胞内信号转导,使神经递质乙酰胆碱(ACh)的受体(AChR)在突触后膜成簇组装,最终形成成熟的神经肌肉接头。
回答下列问题:
(1)兴奋传至神经末梢,神经肌肉接头突触前膜 内流,随后Ca2+内流使神经递质ACh以 的方式释放,ACh结合AChR使骨骼肌细胞兴奋,产生收缩效应。
(2)重症肌无力是一种神经肌肉接头功能异常的自身免疫疾病,研究者采用抗原抗体结合方法检测患者AChR抗体,大部分呈阳性,少部分呈阴性。为何AChR抗体阴性者仍表现出肌无力症状 为探究该问题,研究者作出假设并进行探究。
①假设一:此类型患者AChR基因突变,不能产生 ,使神经肌肉接头功能丧失,导致肌无力。
为验证该假设,以健康人为对照,检测患者AChR基因,结果显示基因未突变,在此基础上作出假设二。
②假设二:此类型患者存在 的抗体,造成 ,从而不能形成成熟的神经肌肉接头,导致肌无力。
为验证该假设,以健康人为对照,对此类型患者进行抗体检测,抗体检测结果符合预期。
③若想采用实验动物验证假设二提出的致病机制,你的研究思路是 。
答案 (1)Na+ 胞吐 (2)①乙酰胆碱的受体(或AChR) ②蛋白M(或蛋白I或蛋白A) 乙酰胆碱受体(AChR)无法在突触后膜成簇组装 ③给实验动物注射蛋白A或M或I的抗体,观察是否出现肌无力(或给实验动物注射蛋白A或M或I抗体的抑制剂,观察肌无力是否缓解)
解析 (1)兴奋传至神经末梢,神经肌肉接头突触前膜兴奋,导致Na+内流产生动作电位;乙酰胆碱(ACh)是一种神经递质,其释放方式是胞吐。(2)①基因能指导蛋白质的合成,若AChR基因突变,则机体无法合成乙酰胆碱的受体(AChR),导致肌无力。②根据题意,假设二情况下,患者不能形成成熟的神经肌肉接头,导致肌无力,据图分析,若患者体内存在蛋白M或蛋白I或蛋白A的抗体,则无法触发肌细胞内信号转导,使乙酰胆碱受体无法在突触后膜成簇组装,进而无法形成成熟的神经肌肉接头。③该实验的目的是验证患者存在蛋白M(或蛋白I或蛋白A)的抗体,使相关蛋白无法发挥作用,最终导致重症肌无力,故可以给实验动物注射蛋白A或M或I的抗体,观察是否出现肌无力,或给实验动物注射蛋白A或M或I抗体的抑制剂,观察肌无力是否缓解。
41.(2022河北,21,10分)皮肤上的痒觉、触觉、痛觉感受器均能将刺激引发的信号经背根神经节(DRG)的感觉神经元传入脊髓,整合、上传,产生相应感觉。组胺刺激使小鼠产生痒觉,引起抓挠行为。研究发现,小鼠DRG神经元中的PTEN蛋白参与痒觉信号传递。为探究PTEN蛋白的作用,研究者进行了相关实验。
回答下列问题:
(1)机体在 产生痒觉的过程 (填“属于”或“不属于”)反射。兴奋在神经纤维上以 的形式双向传导。兴奋在神经元间单向传递的原因是 。
(2)抓挠引起皮肤上的触觉、痛觉感受器 ,有效 痒觉信号的上传,因此痒觉减弱。
(3)用组胺刺激正常小鼠和PTEN基因敲除小鼠的皮肤,结果如图。据图推测PTEN蛋白的作用是 机体对外源致痒剂的敏感性。已知PTEN基因敲除后,小鼠DRG中的TRPV1蛋白表达显著增加。用组胺刺激PTEN基因和TRPV1基因双敲除的小鼠,据图中结果推测TRPV1蛋白对痒觉的影响是 。
答案 (1)大脑皮层 不属于 电信号(神经冲动) 神经递质只能由突触前膜释放,作用于突触后膜 (2)兴奋 抑制 (3)减弱 促进痒觉的产生
解析 (1)机体在大脑皮层产生痒觉的过程没有经过完整的反射弧,因此不属于反射。兴奋在神经纤维上以电信号(神经冲动)的形式双向传导。兴奋在神经元间单向传递的原因是神经递质只能由突触前膜释放,作用于突触后膜。(2)由题意知,抓挠可引起痒觉减弱,推测抓挠引起皮肤上的触觉、痛觉感受器兴奋,会有效抑制痒觉信号的上传。(3)据题图可知,用组胺刺激正常小鼠和PTEN基因敲除小鼠的皮肤,与正常小鼠相比,PTEN基因敲除小鼠30分钟内抓挠次数显著增加,由此推测PTEN蛋白的作用是减弱机体对外源致痒剂的敏感性。已知PTEN基因敲除后,小鼠DRG中的TRPV1蛋白表达显著增加。且据图可知,用组胺刺激PTEN基因和TRPV1基因双敲除的小鼠,与PTEN基因敲除小鼠相比,前者30分钟内抓挠次数明显降低,故推测TRPV1蛋白可促进痒觉的产生。
42.(2022浙江1月选考,30,10分)坐骨神经由多种神经纤维组成,不同神经纤维的兴奋性和传导速率均有差异,多根神经纤维同步兴奋时,其动作电位幅值(即大小变化幅度)可以叠加;单根神经纤维的动作电位存在“全或无”现象。
欲研究神经的电生理特性,请完善实验思路,分析和预测结果(说明:生物信号采集仪能显示记录电极处的电位变化,仪器使用方法不要求;实验中标本需用任氏液浸润)。
(1)实验思路:
①连接坐骨神经与生物信号采集仪等(简图如图1,a、b为坐骨神经上相距较远的两个点)。
图1
②刺激电极依次施加由弱到强的电刺激,显示屏1上出现第一个动作电位时的刺激强度即阈刺激,记为Smin。
③ ,当动作电位幅值不再随刺激增强而增大时,刺激强度即为最大刺激,记为Smax。
(2)结果预测和分析:
①当刺激强度范围为 时,坐骨神经中仅有部分神经纤维发生兴奋。
②实验中,每次施加电刺激的几乎同时,在显示屏上都会出现一次快速的电位变化,称为伪迹,其幅值与电刺激强度成正比,不影响动作电位(见图2)。伪迹的幅值可以作为 的量化指标;伪迹与动作电位起点的时间差,可估测施加刺激到记录点神经纤维膜上 所需的时间。伪迹是电刺激通过 传导到记录电极上而引发的。
图2
③在单根神经纤维上,动作电位不会因传导距离的增加而减小,即具有 性。而上述实验中a、b处的动作电位有明显差异(如图2),原因是不同神经纤维上动作电位的 不同导致b处电位叠加量减小。
④以坐骨神经和单根神经纤维为材料,分别测得两者的Smin和Smax。将坐标系补充完整,并用柱形图表示两者的Smin和Smax相对值。
答案 (1)③在阈刺激的基础上依次施加由弱到强的电刺激 (2)①小于Smax且不小于Smin ②电刺激强度 Na+通道开放 任氏液 ③不衰减 传导速率
④
解析 (1)本实验的目的是研究神经的电生理特性。实验操作中,先依次施加由弱到强的电刺激,确定阈刺激Smin,接着在阈刺激的基础上由弱到强依次增加电刺激,从而确定最大刺激Smax。(2)①当刺激强度大于或等于阈刺激时,坐骨神经中有神经纤维发生兴奋,当刺激强度大于或等于最大刺激时,坐骨神经中所有神经纤维都发生兴奋,因此使坐骨神经中仅有部分神经纤维发生兴奋的刺激强度要大于或等于阈刺激,但小于最大刺激。②已知伪迹的幅值与电刺激强度成正比,因此伪迹的幅值可以作为电刺激强度的量化指标。每次施加电刺激的几乎同时,显示屏上会出现伪迹,推测伪迹是电刺激通过任氏液直接传导到记录电极上而引发的。伪迹与动作电位起点的时间差,可估测施加刺激到记录点神经纤维膜上钠离子通道开放所需的时间。③单根神经纤维上动作电位不会随着传导距离增加而减小,体现了动作电位传导的不衰减性。a、b处的动作电位有明显差异,是因为不同神经纤维的兴奋传导速率有差异导致b处电位叠加量不同于a处。④单根神经纤维的动作电位存在“全或无”现象,因此其阈刺激和最大刺激相同;坐骨神经由多种神经纤维组成,因此其阈刺激小于最大刺激。
43.(2022海南,17,10分)人体运动需要神经系统对肌群进行精确的调控来实现。肌萎缩侧索硬化(ALS)是一种神经肌肉退行性疾病,患者神经肌肉接头示意图如图。回答下列问题。
(1)轴突末梢中突触小体内的Ach通过 方式进入突触间隙。
(2)突触间隙的Ach与突触后膜上的AchR结合,将兴奋传递到肌细胞,从而引起肌肉 ,这个过程需要 信号到 信号的转换。
(3)有机磷杀虫剂(OPI)能抑制AchE活性。OPI中毒者的突触间隙会积累大量的 ,导致副交感神经末梢过度兴奋,使瞳孔 。
(4)ALS的发生及病情加重与补体C5(一种蛋白质)的激活相关。如图所示,患者体内的C5被激活后裂解为C5a和C5b,两者发挥不同作用。
①C5a与受体C5aR1结合后激活巨噬细胞,后者攻击运动神经元而致其损伤,因此C5a-C5aR1信号通路在ALS的发生及病情加重中发挥重要作用。理论上使用C5a的抗体可延缓ALS的发生及病情加重,理由是 。
②C5b与其他补体在突触后膜上形成膜攻击复合物,引起Ca2+和Na+内流进入肌细胞,导致肌细胞破裂,其原因是 。
答案 (1)胞吐 (2)兴奋 化学 电 (3)乙酰胆碱(Ach) 收缩 (4)①C5a的抗体与受体C5aR1竞争性结合C5a,从而不能激活巨噬细胞,使运动神经元不会受到攻击而损伤 ②Ca2+和Na+内流进入肌细胞,使肌细胞内溶液浓度(或细胞内液渗透压)增大,导致细胞吸水涨破
解析 (1)轴突末梢中突触小体内的神经递质Ach是通过胞吐方式进入突触间隙的。(2)突触间隙的Ach与突触后膜上的AchR(Ach的受体)结合,将兴奋传递到肌细胞,从而引起肌肉兴奋,这个过程需要化学信号到电信号的转换。(3)乙酰胆碱酯酶(AchE)可分解乙酰胆碱(Ach),有机磷杀虫剂(OPI)能抑制AchE活性,所以OPI中毒者的突触间隙会积累大量的乙酰胆碱(Ach),导致副交感神经末梢过度兴奋,使瞳孔收缩。(4)①C5a与受体C5aR1结合后激活巨噬细胞,激活的巨噬细胞会攻击运动神经元而致其损伤,若使用C5a的抗体,则该抗体可与C5a特异性结合,从而使C5a失去与受体C5aR1结合的机会,从而无法激活巨噬细胞,因而可延缓ALS的发生及病情加重。②根据题中信息分析题图,C5b与其他补体在突触后膜上形成膜攻击复合物,引起Ca2+和Na+内流进入肌细胞,使肌细胞内溶液浓度增大,导致细胞吸水涨破。
44.(2022江苏,22,12分)手指割破时机体常出现疼痛、心跳加快等症状。如图为吞噬细胞参与痛觉调控的机制示意图。请回答下列问题。
(1)图中,手指割破产生的兴奋传导至T处,突触前膜释放的递质与突触后膜 结合,使后神经元兴奋,T处信号形式转变过程为 。
(2)伤害性刺激使心率加快的原因有:交感神经的兴奋,使肾上腺髓质分泌肾上腺素;下丘脑分泌的 ,促进 分泌促肾上腺皮质激素,该激素使肾上腺皮质分泌糖皮质激素;肾上腺素与糖皮质激素经 运输作用于靶器官。
(3)皮肤破损,病原体入侵,吞噬细胞对其识别并进行胞吞,胞内 (填细胞器)降解病原体,这种防御作用为 。
(4)如图所示,病原体刺激下,吞噬细胞分泌神经生长因子(NGF),NGF作用于感受器上的受体,引起感受器的电位变化,进一步产生兴奋传导到 形成痛觉。该过程中,Ca2+的作用有 。
(5)药物MNAC13是一种抗NGF受体的单克隆抗体,用于治疗炎性疼痛和神经病理性疼痛。该药的作用机制是 。
答案 (1)受体 电信号→化学信号→电信号 (2)促肾上腺皮质激素释放激素 垂体 体液 (3)溶酶体 非特异性免疫 (4)大脑皮层 促进吞噬细胞中含NGF的囊泡和吞噬细胞的细胞膜融合,释放NGF;Ca2+在感受器膜内流形成动作电位,产生兴奋 (5)药物MNAC13与NGF受体结合,阻止NGF与感受器上的受体结合,使得感受器不能产生兴奋,也不能使机体产生痛觉
解析 (1)兴奋在神经元之间的传递是通过突触进行的,手指割破产生的兴奋到达突触前膜所在的神经元轴突末梢时,突触前膜的突触小泡与突触前膜融合,将神经递质释放到突触间隙,神经递质与突触后膜上的相关受体结合,可引起突触后神经元兴奋。兴奋在突触处的信号转变过程为电信号→化学信号→电信号。(2)由肾上腺皮质激素分泌的分级调节知,下丘脑分泌的物质为促肾上腺皮质激素释放激素。此激素作用于垂体,促使垂体分泌促肾上腺皮质激素。通常激素是经体液运输作用于靶器官的。(3)病原体侵染机体后,吞噬细胞将其吞噬,并利用细胞内的溶酶体将其降解,此过程由吞噬细胞参与,不针对特定病原体,属于非特异性免疫。(4)产生感觉的部位在大脑皮层。图中,在吞噬细胞中Ca2+能促进含NGF的囊泡与细胞膜的融合,促进NGF的释放,同时Ca2+在感受器膜内流,形成动作电位,产生兴奋。(5)药物MNAC13是一种抗NGF受体的单克隆抗体,该药物与NGF受体结合,使得NGF不能与NGF受体结合,从而不能引起感受器兴奋,也不能将兴奋传导至大脑皮层,即不能使机体产生痛觉。
45.(2021广东,18,10分)太极拳是我国的传统运动项目,其刚柔并济、行云流水般的动作是通过神经系统对肢体和躯干各肌群的精巧调控及各肌群间相互协调而完成的。如“白鹤亮翅”招式中的伸肘动作,伸肌收缩的同时屈肌舒张。图7为伸肘动作在脊髓水平反射弧基本结构的示意图。
图7
回答下列问题:
(1)图中反射弧的效应器是 及其相应的运动神经末梢。若肌梭受到适宜刺激,兴奋传至a处时,a处膜内外电位应表现为 。
(2)伸肘时,图中抑制性中间神经元的作用是 ,使屈肌舒张。
(3)适量运动有益健康。一些研究认为太极拳等运动可提高肌细胞对胰岛素的敏感性,在胰岛素水平相同的情况下,该激素能更好地促进肌细胞 ,降低血糖浓度。
(4)有研究报道,常年坚持太极拳运动的老年人,其血清中TSH、甲状腺激素等的浓度升高,因而认为运动能改善老年人的内分泌功能,其中TSH水平可以作为评估 (填分泌该激素的腺体名称)功能的指标之一。
答案 (1)伸肌和屈肌 内正外负 (2)释放抑制性神经递质,从而抑制屈肌运动神经元的兴奋 (3)加速摄取、利用和储存葡萄糖 (4)垂体
解析 (1)图示有两个反射弧,效应器分别为伸肌及其运动神经末梢、屈肌及其运动神经末梢。若肌梭受到刺激,兴奋传至a处时,a处因Na+内流而兴奋,此时a处膜电位表现为外负内正。(2)伸肘时,抑制性中间神经元兴奋,其轴突末梢释放抑制性神经递质,从而抑制屈肌运动神经元的兴奋,使屈肌舒张。(3)胰岛素的作用是促进组织细胞加速摄取、利用和储存葡萄糖,从而降低血糖浓度。(4)TSH是垂体分泌的促甲状腺激素,其含量可作为评估垂体功能的指标之一。
46.(2021湖北,23,14分)(14分)神经元是神经系统结构、功能与发育的基本单元。神经环路(开环或闭环)由多个神经元组成,是感受刺激、传递神经信号、对神经信号进行分析与整合的功能单位。动物的生理功能与行为调控主要取决于神经环路而非单个的神经元。
秀丽短杆线虫在不同食物供给条件下吞咽运动调节的一个神经环路作用机制如下图所示。图中A是食物感觉神经元,B、D是中间神经元,C是运动神经元。由A、B和C神经元组成的神经环路中,A的活动对吞咽运动的调节作用是减弱C对吞咽运动的抑制,该信号处理方式为去抑制。由A、B和D神经元形成的反馈神经环路中,神经信号处理方式为去兴奋。
回答下列问题:
(1)在食物缺乏条件下,秀丽短杆线虫吞咽运动 (填“增强”“减弱”或“不变”);在食物充足条件下,吞咽运动 (填“增强”“减弱”或“不变”)。
(2)由A、B和D神经元形成的反馈神经环路中,信号处理方式为去兴奋,其机制是 。
(3)由A、B和D神经元形成的反馈神经环路中,去兴奋对A神经元调节的作用是 。
(4)根据该神经环路的活动规律, (填“能”或“不能”)推断B神经元在这两种条件下都有活动,在食物缺乏条件下的活动增强。
答案 (1)减弱 增强 (2)正反馈调节 (3)加强A神经元的调节作用 (4)能
解析 (1)分析题图,在食物缺乏条件下,A神经元对B神经元的抑制作用减弱,B神经元的兴奋性增强,合成分泌兴奋性神经递质增多,C神经元的兴奋性增强,合成分泌抑制性神经递质增多,秀丽短杆线虫吞咽运动受抑制作用增强,吞咽运动减弱。在食物充足条件下,A神经元对B神经元的抑制作用增强,B神经元的兴奋性减弱,合成分泌兴奋性神经递质减少,C神经元的兴奋性减弱,合成分泌抑制性神经递质减少,秀丽短杆线虫吞咽运动受抑制作用减弱,吞咽运动增强。(2)在食物充足条件下,会刺激A神经元兴奋,分泌抑制性神经递质,对B神经元的抑制作用增强,导致B神经元的兴奋性降低,继而使D神经元兴奋性也降低,从而使A神经元的兴奋性降低。在食物缺乏的条件下,A神经元对B神经元的抑制作用减弱,B神经元的兴奋性增强,促使D神经元兴奋性也增强,进而使A神经元的兴奋性增强。故由A、B和D神经元形成的反馈神经环路中,信号处理方式为去兴奋,其机制是贞反馈调节。(3)由A、B和D神经元形成的反馈审经环路中,去兴奋对A神经元调节的作用是加强A神经元的调节作用。(4)可以通过图中各神经元之间的关系,推断B神经元在两种条件下都有活动,在食物缺乏条件下的活动增强。
47.(2020天津,14,12分)神经细胞间的突触联系往往非常复杂。如图为大鼠视网膜局部神经细胞间的突触示意图。
据图回答:
(1)当BC末梢有神经冲动传来时,甲膜内的 释放谷氨酸,与乙膜上的谷氨酸受体结合,使GC兴奋,诱导其释放内源性大麻素。内源性大麻素和甲膜上的大麻素受体结合,抑制Ca2+通道开放,使BC释放的谷氨酸 (增加/减少),最终导致GC兴奋性降低。
(2)GC释放的内源性大麻素还能与丙膜上的大麻素受体结合,抑制AC中甘氨酸的释放,使甲膜上的甘氨酸受体活化程度 (升高/降低),进而导致Ca2+通道失去部分活性。AC与BC间突触的突触前膜为 膜。
(3)上述 调节机制保证了神经调节的精准性。该调节过程与细胞膜的 两种功能密切相关。
(4)正常情况下,不会成为内环境成分的是 (多选)。
A.谷氨酸 B.内源性大麻素
C.甘氨酸受体 D.Ca2+通道
答案 (共12分)(1)突触小泡 减少 (2)降低 丙 (3)负反馈 控制物质进出细胞、进行细胞间的信息交流 (4)CD
解析 (1)由题图可知,当BC末梢有神经冲动传来时,甲膜内的突触小泡与甲膜融合,释放谷氨酸,且Ca2+的内流可促进谷氨酸的释放。谷氨酸与乙膜上的谷氨酸受体结合,使GC兴奋,诱导其释放内源性大麻素,内源性大麻素与甲膜上的大麻素受体结合,抑制Ca2+通道开放,进而对Ca2+内流促进谷氨酸释放过程起到抑制作用,BC释放谷氨酸减少,导致GC兴奋性降低。(2)由题图可看出,GC释放的内源性大麻素还可以与丙膜上的大麻素受体结合,从而抑制AC中甘氨酸的释放,使甲膜上的甘氨酸受体活化程度降低,进而导致Ca2+通道失去部分活性。AC释放的甘氨酸与甲膜上相应受体结合,说明AC与BC组成的突触中丙膜为突触前膜。(3)BC兴奋时释放的谷氨酸引起GC兴奋,释放内源性大麻素,内源性大麻素通过与甲膜上的大麻素受体结合抑制Ca2+内流,进而抑制BC释放谷氨酸;内源性大麻素与丙膜上的大麻素受体结合可抑制AC释放甘氨酸,进而导致甲膜上甘氨酸受体活化程度降低,使Ca2+内流受阻,最终抑制BC释放谷氨酸,这两条途径均体现了神经调节通过负反馈调节机制保证了调节的精准性。该调节过程与细胞膜的控制物质进出细胞、进行细胞间的信息交流两种功能密切相关。(4)甘氨酸受体与Ca2+通道属于细胞膜的结构成分,而谷氨酸、内源性大麻素可由细胞释放到细胞间隙(组织液中),故A、B会成为内环境成分,而C、D不能成为内环境成分。
48.(2020浙江7月选考,30,10分)欲研究生理溶液中K+浓度升高对蛙坐骨神经纤维静息电位的影响和Na+浓度升高对其动作电位的影响。请完善以下实验思路,预测实验结果,并进行分析与讨论。
(要求与说明:已知蛙坐骨神经纤维的静息电位为-70 mV,兴奋时动作电位从去极化到反极化达+30 mV。测量的是膜内外的电位变化。K+、Na+浓度在一定范围内提高。实验条件适宜)
回答下列问题:
(1)完善实验思路:
组1:将神经纤维置于适宜的生理溶液a中,测定其静息电位和刺激后的动作电位,并记录。
组2: 。
组3:将神经纤维分别置于Na+浓度依次提高的生理溶液d、e中,测定其刺激后的动作电位,并记录。
对上述所得的实验数据进行分析与处理。
(2)预测实验结果(设计一个坐标,以柱形图形式表示实验结果):
(3)分析与讨论:
①简要解释组3的实验结果: 。
②用放射性同位素24Na+注入静息的神经细胞内,不久在生理溶液中测量到放射性,24Na+的这种转运方式属于 。用抑制酶活性的药物处理神经细胞,会使24Na+外流量 。
③刺激脊蛙的坐骨神经,除了在反射中枢测量到动作电位外,还观察到腓肠肌收缩,说明坐骨神经中含有 神经。
答案 (1)将神经纤维分别置于K+浓度依次提高的生理溶液b、c中,测定其静息电位,并记录
(2)
溶液K+、Na+浓度升高对膜电位影响示意图
(3)①细胞外Na+浓度提高,膜内外的浓度差增大,兴奋时,Na+通过Na+通道内流加快,导致动作电位增大 ②主动转运 减少 ③传入和传出
解析 (1)由该实验的目的可知,需以不同K+浓度的生理溶液和不同Na+浓度的生理溶液为实验变量,对比不同K+浓度的生理溶液中神经纤维的静息电位、不同Na+浓度的生理溶液中神经纤维受刺激后的动作电位。组1为在适宜的生理溶液中,测定神经纤维静息电位和刺激后的动作电位;组3为测定Na+浓度依次提高的生理溶液中神经纤维受刺激后的动作电位,推测组2应为测定K+浓度依次提高的生理溶液中神经纤维的静息电位。(2)因静息电位产生的主要原因是K+外流,提高生理溶液中的K+浓度,膜内外K+浓度差减小,K+通过K+通道外流减慢,神经纤维静息电位的绝对值减小,故随生理溶液a、b、c中K+浓度依次增大,神经纤维静息电位的绝对值依次减小。Na+通过Na+通道内流形成动作电位,随a、d、e生理溶液中Na+浓度依次增大,膜内外Na+浓度差增大,Na+内流加快,神经纤维产生的动作电位依次增大。(3)①随细胞外Na+浓度提高,膜内外的Na+浓度差增大,兴奋时,Na+通过Na+通道内流加快,使动作电位增大。②细胞外Na+浓度远高于细胞内,细胞内24Na+出现在细胞外,说明Na+逆浓度梯度运出细胞,其跨膜运输方式为主动转运,该运输方式需载体和能量,抑制酶活性的药物处理神经细胞可影响其呼吸作用产生能量,进而影响主动转运过程,使24Na+外流量减少。③刺激脊蛙的坐骨神经,反射中枢测量到动作电位,说明受刺激部位为传入神经,还观察到腓肠肌收缩,说明坐骨神经中还有传出神经。
49.(2019课标全国Ⅰ,30,8分)人的排尿是一种反射活动。回答下列问题。
(1)膀胱中的感受器受到刺激后会产生兴奋。兴奋从一个神经元到另一个神经元的传递是单向的,其原因是 。
(2)排尿过程的调节属于神经调节,神经调节的基本方式是反射。排尿反射的初级中枢位于 。成年人可以有意识地控制排尿,说明排尿反射也受高级中枢控制,该高级中枢位于 。
(3)排尿过程中,尿液还会刺激尿道上的 ,从而加强排尿中枢的活动,促进排尿。
答案 (1)神经递质由突触前膜释放,作用于突触后膜 (2)脊髓 大脑皮层 (3)感受器
解析 本题借助神经调节的相关知识,考查考生运用所学知识,解释生物学问题的能力;通过对排尿反射过程的分析,体现了生命观念素养中的结构与功能观要素。(1)兴奋经突触传递时,神经递质只能由突触前膜释放,通过突触间隙作用于突触后膜,所以兴奋从一个神经元到另一个神经元的传递是单向的。(2)排尿反射的初级中枢位于脊髓,高级中枢位于大脑皮层。(3)排尿过程中,尿液刺激尿道上的感受器使其产生兴奋,兴奋经传入神经传入排尿中枢,促进排尿。
50.(2016课标全国Ⅱ,30,9分)乙酰胆碱可作为兴奋性神经递质,其合成与释放见示意图。据图回答问题:
(1)图中A-C表示乙酰胆碱,在其合成时,能循环利用的物质是 (填“A”“C”或“E”)。除乙酰胆碱外,生物体内的多巴胺和一氧化氮 (填“能”或“不能”)作为神经递质。
(2)当兴奋传到神经末梢时,图中突触小泡内的A-C通过 这一跨膜运输方式释放到 ,再到达突触后膜。
(3)若由于某种原因使D酶失活,则突触后神经元会表现为持续 。
答案 (1)C 能 (2)胞吐 突触间隙 (3)兴奋
解析 本题考查突触的相关知识。(1)图中A-C表示乙酰胆碱,B表示ADP和Pi,E表示ATP。据图可知,A-C在突触间隙中,被D酶催化分解成A和C,其中,C又被突触前膜吸收回突触小体中,重新与A反应生成A-C,由此可知C能循环利用。神经递质种类很多,主要有乙酰胆碱、多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、氨基酸类、一氧化氮等。(2)当兴奋传到神经末梢时,突触小泡内的神经递质通过胞吐方式释放到突触间隙中,再到达突触后膜。(3)若某种原因使D酶失活,则与突触后膜上受体结合的A-C将无法分解,会导致受体持续受A-C刺激,从而会引起突触后神经元持续兴奋。
51.(2015海南单科,27,8分)Na+在人体的内环境稳态维持和细胞兴奋过程中具有重要作用。回答下列问题:
(1)Na+和Cl-对维持血浆渗透压起重要作用,将红细胞放入0.9%的NaCl溶液中,细胞形态 (填“会”或“不会”)改变。
(2)Na+可与 、 等无机负离子共同存在于血浆中,一起参与缓冲物质的构成。人血浆pH的正常范围是 。
(3)神经细胞受到刺激产生兴奋主要是由Na+ 引起膜电位改变而产生的。当兴奋沿细胞膜传导时,整个细胞膜都会经历与受刺激点相同的 。
答案 (1)不会(1分)
(2)HC HP(每空1分,共2分,其他合理答案也给分) 7.35~7.45(2分)
(3)内流(1分) 电位变化(2分,其他合理答案也给分)
解析 本题考查内环境稳态与神经调节的相关知识。(1)0.9%的NaCl溶液为人体细胞的等渗溶液,放入其中的红细胞形态不发生变化。(2)正常人的血浆pH维持在7.35~7.45,与其含有HC和HP等离子有关。(3)细胞膜外Na+浓度高于细胞膜内。当神经细胞膜受到刺激时,细胞膜对Na+通透性增加,Na+内流,而使兴奋部位的膜电位由外正内负转变为外负内正,与相邻部位产生电位差,当兴奋沿神经细胞膜传导时,兴奋部位都将出现与受刺激点相同的膜电位变化。
解后反思 诸如人体内环境正常pH的单纯记忆知识点在考题中有所出现,需要考生关注。
52.(2014四川理综,8,11分)某人行走时,足部突然受到伤害性刺激,迅速抬腿。如图为相关反射弧示意图。
(1)图示反射弧中,a是 。当兴奋到达b点时,神经纤维膜内外两侧的电位变为 。当兴奋到达c处时,该结构发生的信号转变是 。
(2)伤害性刺激产生的信号传到 会形成痛觉。此时,内脏神经支配的肾上腺分泌的肾上腺素增加,导致心率加快,这种生理活动的调节方式是 。
(3)伤害引起的疼痛可通过下丘脑促进垂体释放 ,直接促进 对水的重吸收。
(4)当细菌感染足部伤口时,机体首先发起攻击的免疫细胞是 。未被清除的病原体经过一系列过程,其抗原会刺激B细胞增殖分化为 。
答案 (1)传入神经 内正外负 电信号→化学信号→电信号
(2)大脑皮层 神经—体液调节
(3)抗利尿激素 肾小管和集合管
(4)吞噬细胞 浆细胞和记忆细胞
解析 (1)依据a所在的神经纤维上有神经节可知,a为传入神经,神经纤维兴奋时,由于Na+内流,膜电位变为内正外负;当兴奋到达c处即突触时,突触前膜释放神经递质,作用于突触后膜,使后膜兴奋,所以此过程发生的信号转变是电信号→化学信号→电信号。(2)感觉形成于大脑皮层,包括痛觉、热觉、冷觉等;内脏神经支配肾上腺分泌肾上腺素,导致心跳加快,这属于神经—体液调节。(3)垂体释放的抗利尿激素能促进肾小管和集合管对水的重吸收。(4)细菌感染足部伤口时,机体首先发起攻击的免疫细胞是吞噬细胞;抗原刺激B细胞增殖分化形成浆细胞和记忆细胞。
53.(2014浙江理综,31,12分)为验证反射弧的组成与作用,某同学提出了以下实验思路:取蛙1只,捣毁该蛙的脑,将其悬挂起来。
①用1%H2SO4溶液刺激该蛙左后肢的趾端(如图),观察是否屈腿。
②洗去H2SO4,再用1%H2SO4溶液刺激该蛙左后肢的趾端,测量该刺激与屈腿是否同时发生。
③分离得到该蛙左后肢的坐骨神经腓肠肌标本,用电刺激直接刺激腓肠肌,观察其是否收缩。
④用电刺激直接刺激上述标本的腓肠肌肌细胞,在坐骨神经上是否能测量到电位变化。
(说明:实验条件适宜;实验中的刺激强度足够;屈腿反射属于屈反射)
请回答:
(1)设计表格,并将预测的实验结果与结果的原因分析填入表中。
(2)为了验证屈腿反射的反射中枢所在部位,在上述实验的基础上写出第⑤项实验思路。
答案 (12分)
(1)验证反射弧的组成与作用实验的预测结果及结果分析表
思路 预测 结果 结果的原因分析
① 是 反射弧完整,能够对刺激作出反应
② 否 刺激产生的兴奋在反射弧中的传导和传递需要时间,故刺激与屈腿不会同时发生
③ 是 电刺激使腓肠肌的肌细胞产生动作电位或兴奋,引起肌肉收缩
④ 否 兴奋在神经肌肉接点的传递是单向的,故坐骨神经上测不到电位变化
(2)⑤捣毁该蛙的脊髓,刺激其右后肢的趾端,观察是否屈腿。
解析 (1)①屈反射的神经中枢位于脊髓,该蛙屈反射的反射弧完整,可对刺激作出相应的反应。②感受器受到刺激后产生的兴奋,在反射弧中传导需要一定的时间,故该蛙左后肢趾端受刺激在先,屈腿反应在后。③腓肠肌肌细胞接受刺激后,可产生兴奋,引起肌肉收缩。④神经肌肉接点类似突触结构,兴奋不能由腓肠肌肌细胞逆向传递到坐骨神经。(2)可破坏该蛙脊髓,刺激右后肢趾端,观察屈反射是否发生来验证屈反射的反射中枢所在部位。因步骤③已破坏了左后