第16章 分 式
16.1分式及其基本性质
16.1.1分式
教学目标:
1、使学生经历分式概念的形成过程,了解分式、整式、有理式诸概念的区别与联系。
2、使学生掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
3、使学生掌握分式有意义的条件,认识事物的联系与制约关系。
重点难点:
重点:1,了解分式的形式A/B (A、B ( http: / / www.21cnjy.com )是整式)并理解分式概念中的“一个特点”:分母含有字母;“一个要求”:字母的取值要使分母的值不能为零;2,掌握分式约分方法并熟练进行分式约分。
难点:理解分式中的分母含有字母以及字母的取值要使分母的值不能为零;分子、分母是多项式的分式约分
教学过程:
一、做一做
(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;
(2)面积为S平方米的长方形一边长a米,则它的另一边长为________米;
(3)一箱苹果售价p元,总重m千克,箱重n千克,则每千克苹果的售价是______元;
二、讲解分式的有关概念
形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.
其中 A叫做分式的分子,B叫做分式的分母.
整式和分式统称有理式。
注意:在分式中,分母的值不能是零。
例如,在分式中,a≠0;在分式中,m≠n.
一般的,对分式都有:分式有意义:B≠0。
分式没有意义:B=0。
分式的值为0:A=0且B≠0。
三、例题讲解与练习
例1、下列各式中,哪些是整式?哪些是分式?
(1); (2); (3); (4).
例2、 当x取什么值时,下列分式有意义?
(1); (2)。
例3、当x是什么数时,分式的值是零?
练习1.下列各式分别回答哪些是整式?哪些是分式?
, , 2a-3b, , ,
练习2 分式 ,当y =? 时,分式有意义;当y 时,分式没有意义;当 y =?时,分式的值为0。
练习3 讨论探索:当x取什么数时,分式 (1)有意义 (2)值为零?
本课小结:
分式的概念和分式有意义的条件。
布置作业:课本第5页习题1、2
课后反思:
17.1.2分式的基本性质
教学目标:
1.进一步理解分式的基本性质以及分式的变号法则。
2.使学生理解分式通分的意义,掌握分式通分的方法及步骤;
重点难点:
重点:让学生知道通分的依据和作用,学会分式通分的方法。
难点:几个分式最简公分母的确定。
教学过程:
一、复习
1.分式中,当x 时分式有意义,当x 时分式没有意义,当x 时分式的值为0。
2.分式的基本性质。
例:若x、y的值均扩大为原来的2倍,则分式的值如何变化?若x、y的值均变为原来的一半呢?
二、分式的基本性质
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
用式子表示是:
( 其中M是不等于零的整式)。
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.
例4、下列等式的右边是怎样从左边得到的?
(1) (2)(y≠—1).
特别提醒:对,由已知分式可以知道x,因此可以用x去除以分式的分子、分母,因而并不特别需要强调这个条件,再如是在已知分式的分子、分母都乘以y+1得到的,是在条件y+10下才能进行的,所以,这个条件必须附加强调。
例5、 约分
(1); (2)
解(2)==.
说明:在进行分式约分时,若分子和分母都是多 ( http: / / www.21cnjy.com )项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分。约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.
三、分式的通分
1.把分数通分。
,,。
2.什么叫分数的通分?
答:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。
3.和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分。
通分的关键是确定几个分式的公分母。
4.讨论: (1)求分式的(最简)公分母。
分析:对于三个分式的分母中的系数2,4,6 ( http: / / www.21cnjy.com ),取其最小公倍数12;对于三个分式的分母的字母,字母x为底的幂的因式,取其最高次幂x3,字母y为底的幂的因式,取其最高次幂y4,再取字母z。所以三个分式的公分母为12x3y4z。
(2) 求分式与的最简公分母。
分析:先把这两个分式的分母中的多项式分解因式,即
4x—2x2= —2x(x-2),x2—4=(x+2)(x—2),
把这两个分式的分母中所有的因式都取到,其中,系数取正数,取它们的积,即2x(x+2)(x-2)就是这两个分式的最简公分母。
请同学概括求几个分式的最简公分母的步骤。
答:1.取各分式的分母中系数最小公倍数;
2.各分式的分母中所有字母或因式都要取到;
3.相同字母(或因式)的幂取指数最大的;
4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。
5.练习:填空:
(1); (2); (3)。
求下列各组分式的最简公分母:
(1); (2);
6、例3 通分
(1),; (2),; (3),.
练习通分:
(1),; (2), (3).
本课小结:1、请你分别用数学语言和文字表述分式的基本性质
2、把几个异分母的分式,分 ( http: / / www.21cnjy.com )别化成与原来分式相等的同分母的分式,叫做分式的通分。分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。
布置作业:课本第5页4、5课后反思:
课后反思:
16.2分式的运算
16.2.1.分式的乘除
教学目标:
1、让学生通过实践总结分式的乘除法,并 ( http: / / www.21cnjy.com )能较熟练地进行式的乘除法运算。使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算
2、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。
重点难点:
重点:分式的乘除法、乘方运算
难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
教学过程:
一、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?
(2):下列各式是否正确?为什么?
二、探索分式的乘除法的法则
1、回忆:
计算:
2.例1计算:
(1); (2).
3.概括:分式的乘除法用式子表示即是:
4. 例2计算:.
5.练习:①课本第9页练习1。
②计算:
三、探索分式的乘方的法则
思考:我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?
先做下面的乘法:
(1)==()3;(2)==()k.
2、仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空:
()(k) =___________(k是正整数)
练习:(1)判断下列各式正确与否:
(2)计算下列各题:
小结:
1.怎样进行分式的乘除法?薄 2.怎样进行分式的乘方?
布置作业:课本第9页习题第1题。
课后反思:
16.2.2 分式的加减
教学目标:
1、使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、渗透类比、化归数学思想方法,培养学生的能力。
重点难点:
重点:让学生熟练地掌握同分母、异分母分式的加减法。
难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。
教学过程:
一、同分母分式的加减法
1.回忆:同分母的分数的加减法
2.类似地,同分母的分式的加减法法则如下:
同分母的分式相加减,分母不变,把分子相加减。
3.例1计算:
(1);. (2)-
4、练习:课本第11页练习1。
二、异分母分式的加减法
1、回忆:异分母分数的加减法
计算:
2、与异分母分数的加减法类似,异分母分式相加减,需要先通分,变为同分母的分式,然后再加减.
通分时,最简公分母由下面的方法确定:
最简公分母的系数,取各分母系数的最小公倍数;
最简公分母的字母,取各分母所有字母的最高次幂的积;
分母是多项式时一般需先因式分解。
3.例2 计算:
(1)+; (2).
解 (1)+ = =
(2)因为最简公分母是_______,所以=_______=______=_____
4.练习:课本第11页练习2(1、2、3小题)
5、例3:计算
解:原式=
6、练习:计算
(1) (2) (3)
本课小结:异分母分式的加减法步骤:
1. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取 ( http: / / www.21cnjy.com )各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。
2. 准确地得出各分式的分子、分母应乘的因式。
3. 用公分母通分后,进行同分母分式的加减运算。
4. 公分母保持积的形式,将各分子展开。
5. 将得到的结果化成最简分式。
布置作业:课本第9页2、3
课后反思:
16.3可化为一元一次方程的分式方程(1)
教学目标:
1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.
2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.
重点难点:
1、使学生领会“ 转化”的思想方法 ( http: / / www.21cnjy.com ),认识到解分式方程的关键在于将它转化为整式方程来解.2、培养学生自主探究的意识,提高学生观察能力和分析能力。
教学过程:
一、探究问题,引入分式方程的概念:
1、问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.
已知水流的速度是3千米/时,求轮船在静水中的速度.
2、分析:
设轮船在静水中的速度为x千米/时,根据题意,得
3、概 括
方程(1)有何特点?
让学生观察分析后,发表意见,达成共识:
方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.
教师提问:你还能举出一个分式方程的例子吗?
让学生举出分式方程的例子,根据分式方程的概念进行判定,加深对分式方程概念的理解。
4、辨析:判断下列各式哪个是分式方程.
(1) ;(2) ; (3) ; (4) ;(5)
根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.
二、探究分式方程的解法
1、思 考 : 怎样解分式方程呢?
为了解决本问题,请同学们先思考并回答以下问题:
1)、回顾一下一元一次方程时是怎么去分母的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢?
方程(1)可以解答如下:
方程两边同乘以(x+3)(x-3),约去分母,得
80(x-3)=60(x+3).
解这个整式方程,得
x=21.
所以轮船在静水中的速度为21千米/时.
2、概 括
上述解分式方程的过程,实质上是将方程的两 ( http: / / www.21cnjy.com )边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.
3、例1 解方程:.
解 方程两边同乘以(x2-1),约去分母,得x+1=2.
解这个整式方程,得x=1. ( http: / / www.21cnjy.com )事实上,当x=1时,原分式方程左边和右边的分母(x-1)与(x2-1)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.
4、在将分式方程变形为整 ( http: / / www.21cnjy.com )式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.
5.那么,可能产生“增根”的原因在哪里呢?
6、验根的方法
解分式方程进行检验的关键是看所求得的整 ( http: / / www.21cnjy.com )式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.
如例1中的x=1,代入x2-1=0,可知x=1是原分式方程的增根.
7、有了上面的经验,我们再来完整地解二个分式方程.
例2 解方程:(1) (2)
8、练习:课本第页练习1、2
本课小结:①、什么是分式方程?举例说明 ( http: / / www.21cnjy.com );②、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.3、解分式方程为什么要进行验根?怎样进行验根?
布置作业:课本第14页练习1.
课后反思:
17.3 可化为一元一次方程的分式方程(2)
教学目标:
①、进一步熟练地解可化为一元一次方程的分式方程。
②、通过分式方程的应用教学,培养学生数学应用意识。
重点难点:
重点:让学生学习审明题意设未知数,列分式方程。
难点:在不同的实际问题中,设元列分式方程
教学过程:
一、复习练习
解下列方程:
(1) (2)
二、列方程解应用题
学生回忆:列方程解应用题的一般步骤:这些解题方法与步骤,对于学习分式方程应用题也适用。这节课,我们将学习列分式方程解应用题。
2、例1某校招生录取时,为了防止数 ( http: / / www.21cnjy.com )据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?
解 设乙每分钟能输入x名学生的成绩,则甲每分能输入2x名学生的成绩,根据题意得
=. 解得x=11.
经检验,x=11是原方程的解.并且x=11,2x=2×11=22,符合题意.
答:甲每分钟能输入22名学生的成绩,乙每分钟能输入11名学生的成绩.
强调:既要检验所求的解是否是原分式方程的解,还要检验是否符合题意;时间要统一。
2、概括:列分式方程解应用题的一般步骤:
(1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;
(4)解方程,并验根,还要看方程的解是否符合题意;
(5)写出答案(要有单位)。
3、练习:求解本章导图中的问题.
4、例2 A,B两地相距135千米 ( http: / / www.21cnjy.com ),两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度。
解析:设大车的速度为2x千米/时,小车的速度为5x千米/时,根据题意得
-=5-解之得x=9 经检验x=9是原方程的解 当x=9时,2x=18,5x=45
答:大车的速度为18千米/时,小车的速度为45千米/时
5、练习:(1)甲乙两人同时从 地出发,骑自行车到 地,已知 两地的距离为 ,甲每小时比乙多走 ,并且比乙先到40分钟.设乙每小时走 ,则可列方程为( )
A. B. C. D.
(2)我军某部由驻地到距离30千米的 ( http: / / www.21cnjy.com )地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
本课小结:
列分式方程与列一元一次方程解应用题的差别是什么?
你能总结一下列分式方程应用题的步骤吗?
布置作业:课本第4页给习第3.4题。
课后反思:
16.4零指数幂与负整指数幂
17.4.1零指数幂与负整数指数幂
教学目标:
1、使学生掌握不等于零的零次幂的意义。
2、使学生掌握(a≠0,n是正整数)并会运用它进行计算。
3、通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。
重点难点:不等于零的数的零次幂的意义以及理解和应用负整数指数幂的性质是本节课的重点也是难点。
教学过程:
一、讲解零指数幂的有关知识
1、问题1 在§21.1中介绍同 ( http: / / www.21cnjy.com )底数幂的除法公式am÷an=am-n时,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?
2、探 索
先考察被除数的指数等于除数的指数的情况.例如考察下列算式:
52÷52,103÷103,a5÷a5(a≠0).
一方面,如果仿照同底数幂的除法公式来计算,得
52÷52=52-2=50,
103÷103=103-3=100,
a5÷a5=a5-5=a0(a≠0).
另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1.
3、概 括
我们规定:
50=1,100=1,a0=1(a≠0).
这就是说:任何不等于零的数的零次幂都等于1.
二、讲解负指数幂的有关知识
1、探 索
我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式:
52÷55, 103÷107,
一方面,如果仿照同底数幂的除法公式来计算,得
52÷55=52-5=5-3, 103÷107=103-7=10-4.
另一方面,我们可利用约分,直接算出这两个式子的结果为
52÷55===, 103÷107===.
2、概 括
由此启发,我们规定: 5-3=, 10-4=.
一般地,我们规定: (a≠0,n是正整数)
这就是说,任何不等于零的数的-n (n为正整数)次幂,等于这个数的n 次幂的倒数.
三、例题讲解与练习巩固
1、例1计算:
(1)810÷810; (2)10-2; (3)
练 习:计算:
(1)(-0.1)0; (2); (3)2-2; (4).
2、例2计算:
;
练习:计算
(1) (2)
2、例3、用小数表示下列各数:
(1)10-4; (2)2.1×10-5.
3、练习:用小数表示下列各数:
(1)-10-3×(-2) (2)(8×105)÷(-2×104)3
本课小结:
同底数幂的除法公式am÷an=am-n (a≠0,m>n)当m=n时,am÷an = 当m < n 时,am÷an =
任何数的零次幂都等于1吗?
规定其中a、n有没有限制,如何限制。
布置作业:
课本第20页习题1、第22页复习题A2。
课后反思:
16.4.2 科学记数法
教学目标:
能较熟练地运用零指数幂与负整指数幂的性质进行有关计算。
2、 会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。
重点难点:
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数
难点:理解和应用整数指数幂的性质。
教学过程:
复习练习:
1、 ;= ;= ,= ,= 。
2、(04苏州)不用计算器计算:÷(—2)2 —2 -1+
二、指数的范围扩大到了全体整数.
1、探 索
现在,我们已经引进了零指数幂和 ( http: / / www.21cnjy.com )负整数幂,指数的范围已经扩大到了全体整数.那么,在§14.1“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.
(1); (2)(a·b)-3=a-3b-3; (3)(a-3)2=a(-3)×2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。
3、例1 计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式= 2-3m-3n-6×m-5n10 = m-8n4 =
4 练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3; (2)(2mn2)-2(m-2n-1)-3.
三、科学记数法
1、回忆: 在§2.12中,我们曾 ( http: / / www.21cnjy.com )用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成 a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.
2、 类似地,我们可以利用10的负整数 ( http: / / www.21cnjy.com )次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.
3、探索:
10-1=0.1 10-2= 10-3= 10-4= 10-5=
归纳:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.
分 析 我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.
所以35纳米=35×10-9米.
而35×10-9=(3.5×10)×10-9=35×101+(-9)=3.5×10-8,
所以这个纳米粒子的直径为3.5×10-8米.
5、练 习
①用科学记数法表示:
(1)0.000 03;(2)-0.000 0064;(3)0.000 0314;(4)2013 000.
②用科学记数法填空:
(1)1秒是1微秒的1000000倍,则1微秒=_________秒;
(2)1毫克=_________千克; (3)1微米=_________米; (4)1纳米=_________微米;
(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.
本课小结:
引进了零指数幂和负整数幂,指数的范围扩 ( http: / / www.21cnjy.com )大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1≤∣a∣<10. 其中n是正整数
布置作业:课本第21页练习3.4;
课后反思:
异分母分式
的加减法
同分母分式
的加减法
分母不变
分子相加减
通分
法则