第13章 全等三角形
13.1 命题、定理与证明
13.1.1命题
教学目标:
1、了解定义、命题、真命题、假命题、
2、会区分命题的条件(题设)和结论,
重点难点:
1、重点:定义、命题
2、难点:判定什么定义、命题
教学过程:
一、创设问题情境引入
情境1:小亮和小刚正在津津有味地阅读《我们爱科学》。
小亮:“哈!这个黑客终于被逮住了。”
小刚:“是的,现在英特网广泛运用于我们的生活中,给我带来了方便,但……”
坐在旁边的两个人一边听着他的谈话,一边也在悄悄议论着。
“这个黑客是个小偷吗?” “可能是喜欢穿黑衣服的贼。”
“那因特网肯定是一张很大的网。”
“估计可能是英国造的特殊的网。”
你听完这则片段故事,有何想法?
同学们各抒己见后,老师给予同学的各种回答 ( http: / / www.21cnjy.com )评价后,发表自己的看法:在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这引起概念,以致无法进行正常的交流。同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义。本节我们就一起来学习——§24.3命题与证明的第一节定义、命题与定理。
练习:课本P93 练习1
二、共同探索获得新知
1、试一试:得出定义
你是如何找出图中的平行四边形呢?
“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形的含义以及区别于其他图
形的特征。
一般地,能明确指出概念含义或特征的句子,称为定义。
例如:(1) 有一个角是直角的三角形,叫做 ( http: / / www.21cnjy.com )直角三角形.
(2) 有六条边的多边形,叫做六边形.
(3) 在同一平面内,两条不相交的直线叫做平行线.
你还能举出一些其他的例子吗?观察这些定义,你发现定义中用词有什么特征?
同学们各抒己见后,总结:定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、
“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的事物或名词区别开来。
2、思考:得出命题
思考:试判断下列句子是否正确。
(1)如果两个角是对顶角,那么这两个角相等 ( http: / / www.21cnjy.com );
(2)三角形的内角和是180°;
(3)同位角相等;
(4)平行四边形的对角线相等;
(5)菱形的对角线相互垂直
根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以
判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为
假命题。
练习:
(1)下列句子哪些是命题?
①动物都需要水; ②猴子是动物的一种;
③玫瑰花是动物; ④美丽的天空;
⑤对应角都相等的两个三角形一定全等; ⑥负数都小于零;
⑦你的作业做完了吗? ⑧所有的质数都是奇数;
⑨过直线外一点作l的平行线; ⑩如果,,那么。
(2)练习:课本P93 练习3
3、观察发现,命题结构。
观察下列命题,你能发现这些命题有什么共同的结构特征?与同样交流。
(1)如果两个三角形的三条边相等,那么这两个三角形全等;
(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;
(3)如果一个四边形的对角线相等,那么这个四边形是矩形;
(4)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。
总结:在数学中,许多命题是 ( http: / / www.21cnjy.com )由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果……那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论。
例、把命题“在一个三角形中,等角对等边 ( http: / / www.21cnjy.com )”改写成“如果……那么……”的形式,并分别指出命题的题设与结论.
解:这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”。
三、巩固知识、归纳总结
同学们,本节你学到了哪些知识?有何体会?还有什么疑惑呢?若同学有疑惑,还可一起讨论,帮助解惑。
四、作业
练习:课本P93 练习2
课后反思:
13.1.2定理与证明
教学目标:
1、了解定理的含义,会区分命题的条件(题设)和结论,奠定推理论证的基础;
2、初步体会合理化思想,使学生明确什么定理及其意义。
重点难点:
1、公理、定理的概念;
2、难点:定理论证。
教学过程:
一、创设问题情境引入
1、什么叫命题、真命题、假命题、
2、命题的条件(题设)和结论
二、共同探索获得新知
问题:如何证实一个命题是真命题呢?
用我们以前学过的观察、实践、验证特例等方法。这些方法往往并不可靠。
能不能根据已经知道的真的命题证实呢?那已知知道的真命题又是如何证实呢?
哦……那可怎么办?
其实,在数学发展史上,数学家们也遇 ( http: / / www.21cnjy.com )到类似的问题。公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫《原本》。为了说明每一个结论的正确性,他在编写这本书时进行了大胆创造:挑战了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据,其中数学名词称为原名,公认的真命题称为公理。即数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
小组竞赛:
请你说出学过知识中,哪些是公理,哪组说的又多又准就是获胜者。
如:
(1)一条直线截两条平行直线所得的同位角相等;
(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
(3)如果两个三角形的两边及其夹角(或两角及其夹边,或三边)分别对应相等,那么这两个三角形全等;
(4)全等三角形的对应边、对应角分别相等
此外,我们把等式、不等式的有关性质 ( http: / / www.21cnjy.com )以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为逻辑推理的依据.
有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).
例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”
男女对抗赛:由男女同学各说定理,并分别由对方判断正误,说对一个定理得1分,高分都获胜。
三、巩固知识、归纳总结
同学们,本节你学到了哪些知识?有何体会?还有什么疑惑呢?若同学有疑惑,还可一起讨论,帮助解惑。
四、作业
P66 习题19.1 1
课后反思:
13.2 三角形全等的判定
1全等三角形、2、全等三角形的判定条件
教学目标:
1、经历探索三角形全等条件的过程,体会如何探索研究问题。培养学生合作的精神,让学生体验分类的思想;
2、使学生懂得如何提出问题,分类讨论,并为以后研究提出问题。
【重点难点】:
1、难点:培养学生探索问题能力;
2、重点:掌握探索问题的方法。
【教学过程】:
一、复习
1、请一位同学叙述上一节所学的知识。
2、如图,△ABC≌△AEC,,,求出△AEC各内角的度数。
3、你是如何来识别两个三角形全等的?
从学生的回答中,提出:我们能不能找到一些较为简便的方法用来识别三角形的全等呢?有没有类似于相似三角形的识别方法呢?
回想一下,相似三角形有哪些识别方法?
本节开始,我们就一起来研究,探讨§24.2全等三角形的识别。
二、新授
要画一个三角形与老师在黑板上画的三角形ABC全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件……
1、做一做
(1)只给一个条件:一条边,大家画出三角形,小组交流画的三角形全等吗?一个角,大家画出三角形,小组交流画的三角形全等吗?
(2)给出两个条件画三角形时,有几种可能的情 ( http: / / www.21cnjy.com )况?这两个三角形一定会全等吗?分别按照下面条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等。
①三角形的一个内角为60°,一条边为3 cm;
② 三角形的两个内角分别为30°和70°;
③ 三角形的两条边分别为3 cm和5 cm
你们在画图和同学比较过程中,你能得出什么结论?
学生各抒己见后,教师归纳: ( http: / / www.21cnjy.com )你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同)。
2、议一议
如果给出三个条件画三角形,你能说出有哪几种可能的情况?
(有四种可能:三条边、三个角、两边一角和两角一边)
对于按以上每一种可能画得三角形是否全等,以后我们一起分别逐个探讨研究,现在我们先一起来完成以下几个练习。
三、巩固练习
1、如图,点O是平行四边 ( http: / / www.21cnjy.com )形ABCD的对角线的交点,△AOB绕O旋转180 ,可以与△___________重合,这说明△AOB≌△___________.这两个三角形的对应边是AO与__________,OB与__________,BA与__________;对应角是∠AOB与________,∠OBA与_________,∠BAO与___________。
2、如图,△ABC是等腰三角形,AD是底边上的高,△ABD和△ACD全等吗?试根据等腰三角形的有关知
识说明理由
四、小结
让学生谈收获、体会、疑惑后,教师总结: ( http: / / www.21cnjy.com )本节通过画图实践可得,对于两个三角形的三条对应边、三个对应角中,只有满足其中一个条件或两个条件相等,两个三角形不一定全等。至于满足其中的三个条件相等的情况如何呢?请听下回分解。
五、作业
1、如图,△AOD≌△BOC,写出其中相等的角。
2、如图,△ABC≌△,,,
3、如图,△ABC≌△DEF,且A和D,B和E是对应顶点,则相等的边有 ,相等的角有 。
4、已知△ADC≌△CBA,且,写出相等的边、角。
5、如图,△ACD≌△ECB,A、C、B在一条直线上,且A和E是一对对应顶点,如果,那么将△ACD围绕C点顺时针旋转多少度与△ECB重合。
课后反思:
3.边角边
教学目标:
1、使学生掌握SAS的内容,会运用SAS来识别两个三角形全等;
2、通过识别全等三角形的识别的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;
3、经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合作能力。
重点难点:
1、难点:三角形全等的识别:SAS;
2、重点:对全等三角形的识别的理解和运用。
教学过程:
一、复习
1、什么叫全等图形?什么叫做全等三角形?
(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形)。
2、将全等的△ABC与△DEF重合,再沿BC方向将△DEF推移如图位置,问线段AD与BE数量关系怎样?BC与EF位置关系怎样?为什么?
[ ,BC∥EF
∵ △ABC≌△DEF
∴
∴
∴
又∵ △ABC≌△DEF
∴
∴ BC∥EF ]
(虽然本教材没有采用∵∴的形式,但根据《课标》的精神,结合其他版本教材,如北师大的版本,建议可以采用,可以使解题简捷。)
3、已知:如图,,,,,求的大小。
[,,
∴ △ACB≌△AED
∴
∴
∴
∴]
二、新授
1、引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况。情况如何呢?
(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)
如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我
们要探讨的课题。
2、问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢?
(应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,
形成两边一对角。)
每一种情况下得到的三角形都全等吗?
3、做一做
(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为和,它们的夹角为,你能画出这个三角形吗?你画的与同伴画的一定全等吗?
换两条线段和一个角试试,你发现了什么?
同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的。
这就是判别三角形全等的另外一种简便的方法:
如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为
(S.A.S.)
你能用相似三角形的识别法来解释这种“SAS”识别三角形全等的方法吗?
(一个角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,夹这个角的两
边对应相等,这两个三角形的形状、大小都相同,即为全等三角形)
(2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为和,长度为的边所对的角为,情况会怎样呢
请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
(两边及其中一边的对角对应相等,两个三角形不一定全等。)
4、范例:如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD.
解 已知 AB=AC,∠BAD=∠CAD,
又AD为公共边,由(S.A.S.)全等识别法,可知
△ABD≌△ACD
三、巩固练习
练习1、2
四、小结
学生谈收获、体会、疑惑后,进一步总结本 ( http: / / www.21cnjy.com )节学习了三角形全等的识别的另一种SAS,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件。
五、作业
习题13.2. 2 题
课后反思:
4.角边角
教学目标:
1、使学生理解ASA的内容,能运用ASA全等识别法来识别三角形全等进而说明线段或角相等;
2、通过画图、实验、发现、应用的过 ( http: / / www.21cnjy.com )程教学,树立学生知识源于实践用于实践的观念。使学生体会探索发现问题的过程。经历自己探索出AAS的三角形全等识别及其应用。
重点难点:
1、难点:三角形全等的识别法ASA和AAS及应用;
2、重点:利用三角形全等的识别法,间接说明角相等或线段相等。
重点难点:
剪刀、卡纸。
教学过程:
一、复习
1、什么叫做全等三角形,如何识别两个三角形全等?
(能够完全重合的两个三角形叫做全等三角形。识别两个三角形全等的方法有:SSS;SAS)。
二、新授
1、引入:请问到本节为止,我们探讨两个三角形满足三个条件的哪几种情况,情况如何呢?
(如果两个三角形有三条边分别对应相等或两 ( http: / / www.21cnjy.com )个三角形有两条边及其夹角分别对应相等,那么这两个三角形就一定全等。如果两个三角形有三个角分别对应相等,或两个三角形的两边及其一边所对的角对应相等,那么这两个三角形不一定全等。)
还有哪些情况还没有探讨呢?
(如果两个三角形的两个角及一条边分别对应相等,这两个三角形一定全等吗?)
本节我们闵来探讨两个三角形的两个角及一条边分别对应相等,这两个三角形是否全等的课题。
2、问题1:如果把已知一个三角形的两角及一边,那么有几种可能的情况呢?
(一种情况是两个角及两角的夹边;另一种情况是两个角及其中一角的对边。)
每一种情况下得到的三角形都全等吗?
3、请同学们动手做一个实验:同桌两位同学为一组。
(1)共同商定画出任意一条线段AB,与两个角、()
(2)两位同学各自在硬纸板上画线段的长等于商定的线段AB的长,在的同旁,画等于商定的,画等于商定的,设与相交于,便得△。
(3)用剪刀各自剪出△,将同桌同学剪出的两个三角形重叠在一起发现了什么?其他各桌的同学是否也有同样的结论呢?
同学们各抒己见后,总结:对于已知两个 ( http: / / www.21cnjy.com )角和一条线段,以该线段为夹边,所画的三角形都是全等的.
由此得到另一个识别全等三角形的简便方法:
如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简记为“角边角”或简记为(A.S.A.)。
4、问题2:试说明ASA全等识别法与相似三角形的识别法有什么类似的。
(两个角对应相等的两个三角形相似,当这两个角的公共边相等时,这两个三角形的形状、大小都相同,即为全等三角形。)
5、思考:如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,
那么这两个三角形是否一定全等?
动手画一画:比如,,,
你能画这个三角形吗?
提示:这里的条件与实验中的条件有什么相同点与
不同点?你能将它转化为实验中的条件吗?
你画的三角形与同伴画的一定全等吗?
现在两组同学按如果角所对的边为画,另两组同学换两个角和一条线段,试试看,你们得出什么结论?
同学们各抒己见后,总结:对于已知两个角 ( http: / / www.21cnjy.com )和一条线段,以该线段为夹边,所画的三角形都是全等的.
由此得到另一个识别全等三角形的简便方法:
如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.简写成:“角角边”或简记为(A.S.A.)。
6、问题3:你能说说ASA与AAS这两种全等识别法间的关系吗?
(AAS识别法可由ASA识别法推导出来,如上图中,因为,,由于,,所以,于是△ABC与△DEF具备ASA全等。)
7、范例
如图,,,试说明△ABC≌△DCB
解:已知,
又BC是公共边,由(ASA)全等识别法,
可知△ABC≌△DCB
三、巩固练习
练习 1、2
四、小结
用采访的形式访问一些同学,本节学到什么知识,对这些知识有什么体会,对本节的知识存在着哪些疑问。
五、作业
习题13.2 3、4、5
课后反思:
5.边边边
教学目标:
1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实验,发现新知识的能力。
重点难点:
1、难点:让学生掌握边边边公理的内容和运用公理的自觉性;
2、重点:灵活运用SSS识别两个三角形是否全等。
教学过程:
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何识别的。
(同学们各抒己见,如:动手用纸 ( http: / / www.21cnjy.com )摹下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?
做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师
指导,同学们动手画,教师演示并叙
述书写出步骤。
步骤:
(1)画一线段AB使它的长度等于c(4.8cm).
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.
(3)连结AC、BC.
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段 ( http: / / www.21cnjy.com ),如果它们能组成三角形,那么所画的三角形都是全等的。
这样我们就得到识别三角形全等的一种简便的方法: 如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.)。
2、问题2:你能用相似三角形的识别法解释这个(SSS)三角形全等的识别法吗?
(我们已经知道,三条边对应成比例的两个三角 ( http: / / www.21cnjy.com )形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)
3、问题3、你用这个“SSS”三角形全等的识别法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
4、范例:
例1 如图24.2.2, ( http: / / www.21cnjy.com )四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.
解:已知 AD=BC,AB=DC,
又因为AC是公共边,由(S.S.S.)
全等识别法,可知△ABC≌△CDA
5、练习:
练习1、2
6、试一试:已知一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的,但大小不一定相同)。
三个对应角相等的两个三角形不一定全等。
三、加强练习,巩固知识
1、如图,,,△ABC≌△DCB全等吗?为什么?
2、如图,AD是△ABC的中线,。与相等吗?请说明理由。
四、小结
本节课探讨出可用(SSS)来识别两个
三角形全等,并能灵活运用(SSS)来
识别三角形全等。三个角对应相等的两
个三角不一定会全等。
五、作业
习题13.2 1题
课后反思:
全等三角形的识别复习
教学目标:
1、帮助学生总结一般三角形全等的识别条件,使他们自觉运用各种全等识别法进行说理;
2、通过一般三角形全等识别条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系。
重点难点:
1、重点:让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来识别三角形全等。
2、难点:灵活应用各种识别法识别全等三角形。
教学过程:
一、复习
1、识别两个三角形全等的条件有哪些?
(有SAS、ASA、AAS、SSS四种)
2、一个三角形共有三条边与三个角,你是 ( http: / / www.21cnjy.com )否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比如说“SSA”、“AAA”能成为判定两个三角形全等的条件吗?
二、新授
1、演示
(1)演示图1中的I、II三角形,它们 ( http: / / www.21cnjy.com )间有两边及一对角对应相等,这两个三角形能完全重合,是全等形。但再取出III的三角形与I叠在一起后,发现它们不重合不是全等形,因此我们进一点证实了:有两边和其中一边的对角对应相等的两个三角形不一定全等。“SSA”不是识别三角形全等的方法。
(2)演示图2中的I、II三角形,它们间 ( http: / / www.21cnjy.com )有三个角对应相等,这两个三角形能完全重合,是全等形,但再取出III的三角形与I叠在一起后,发现它们不重合,不是全等形。因此我们进一步证实了:三个角对应相等的两个三角形不一定全等“AAA”也不是识别三角形全等的方法。
2、填下表(挂出小黑板,让学生思考、讨论,共同填答)。
两个三角形中对应相等的元素 两个三角形是否全等 依据的识别法 反例
SSS √ SSS
SAS √ SAS
SSA X 可举反例
ASA √ ASA
AAS √ AAS
AAA X 可举反例
3、范例
例:如图,,,点F是CD的中点,吗?试说明理由。
教学要点:
(1)分析题目结论假定,可转化为,需证它们所在的两个三角形全等;
(2)观察图形,、中,并不在三角形中,为此添辅助线AC、AD;
(3)在△ACF与△ADF中,已知AF是公共边,CF=FD,尚缺一条件,它只能是AC与AD相等;
(4)为证AC与AD相等。又要找它们分别在的△ACB与△ADE;
(5)△ACB与△ADE,由已知条件可由SAS证它们全等;
(6)书写范例。
解:连结AC、AD,由已知AB=AE,,BC=DE
由SAS三角形全等识别法可知:
△ABC≌△AED
根据全等三角形的对应相等可知
由,,(公共边),
根据SSS可知△ACF≌△ADF
根据全等三角形的对应角相等可知
又由于F在直线CD上,可得,即。
你们可有其他方法吗?
三、巩固练习
1、如图,在△ABC中,,,试说明△AED是等腰三角形。
2、如图,AB∥CD,AD∥BC,与,与相等吗?说明理由。
四、小结
由学生对本节的学习过程进行总结。
五、作业
(一)、填空题:
1、有一边对应相等的两个 三角形全等;
2、有一边和 对应相等的两个三角形全等;
3、有两边和 一角对应相等的两个三角形全等;
4、如图,AB∥CD,AD∥BC,AC、BD相交于点O。
(1)由AD∥BC,可得 = ,由AB∥CD,可得 = ,又由 ,于是△ABD≌△CDB;
(2)由 ,可得AD=CB,由 ,可得△AOD≌△COB;
(3)图中全等三角形共有 对。
(二)、选择题:
1、若△ABC≌△BAD,A和B、C和D是对应顶点,如果,,,则BC的长是( )
A、 B、 C、 D、无法确定
2、下列各说法中,正确的是( )
A、有两边和一角对应相等的两个三角形全等;B、有两个角对应相等且周长相等的两个三角形全等;
C、两个锐角对应相等的两个直角三角形全等;
D、有两组边相等且周长相等的两个三角形全等。
(三)、解答题:
1、如图,,,AC、BD交于点
,图中共有几对长度相等的线段,
你是通过什么办法找到的?
2、如图,,,
(1)等于多少度? (2)图中有哪几组平行线?
(3)与的和是定值吗?
课后反思:
6.斜边直角边
教学目标:
1、经历探索直角三角形全等条件的过程,掌握直角三角形全等的条件,并能运用其解决一些实际问题;
2、学习事物的特殊、一般关系、发展逻辑思维能力。
重点难点:
1、重点:让学生掌握直角三角形全等的“HL”识别法;
2、难点:理解直角三角形为内角在构造三角形时特殊性,并能灵活地运用各种全等识别法识别两个直角三角形全等是否全等。
教学过程:
一、复习
如图,△ABC和△都是直角三角形,请你用所学的知识,须加上什么条件直角△ABC和△全等。并说明理由。
[,,(SAS);
,(ASA);
,,,(SSS)
,(AAS)]
等,让学生抢答。
二、创设问题情境
问题:舞台背景的形状是两个直角三角形。工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆计划遮住无法测量。
1、你能帮他想个办法吗?
2、如果他只带了一个卷尺,能完成这个任务吗?
[问题1,学生可以回答去量斜边和一锐角,或直角边和一个锐角;但对于问题2,学生则难肯定]。
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
三、动手实践,探索新知
试以两条线段,,分别为直角边和斜边在卡纸上画一个三角形。
按照下面的步骤做一做:
(1)作;
(2)在射线CM上截取线段;
(3)以A为圆心,以长为半径画弧,交射线CN于点B;
(4)连结AB。
问:
(1)△ABC就是所求作的三角形吗?(是的)
(2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?你发现了什么?
(能重合;发现:两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等)
(3)你能用所学的知识来解决你的发现吗?
(由勾股定理可知,另一条直角边也是对应相等的)
因此可以得到如下结论:
如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等. 简记为(H.L.)
四、想一想
你可以用几种方法说明两个直角三角形全等?
五、例题
六、巩固练习练习1、2
七、小结
学生谈谈收获、疑惑。总结本节学习直角三角形全等的识别,除了一般三角形全等识别法外,还有“HL”。
八、作业 习题13.2
课后反思:
13.3 等腰三角形
1.等腰三角形性质 (1)
教学目标
1.使学生了解等腰三角形的有关概念,掌握等腰三角形的性质。
2.通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动。
重点、难点
重点:等腰三角形等边对等角性质。
难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。
教学过程
一、复习引入
1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形
△ABC中,如果有两边AB=AC,那么它是等腰三角形。
2.日常生活中,哪些物体具有等腰三角形的形象
二、新课
1.指出△ABC的腰、顶角、底角。
相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。
2.实验。
现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三
角形的大小和形状可以不一样,把纸片对折,让 ( http: / / www.21cnjy.com )两腰AB、AC重叠在一起,折痕为AD,如图(2)所示,你能发现什么现象吗 请你尽可能多的写出结论。
( http: / / www.21cnjy.com )
可让学生有充分的时间观察、思考、交流,可能得到的结论:
(1)等腰三角形是轴对称图形
(2)∠B=∠C
(3)BD=CD,AD为底边上的中线。
(4)∠ADB=∠ADC=90°,AD为底边上的高线。
(5)∠BAD=∠CAD,AD为顶角平分线。
结论(2)用文字如何表述
等腰三角形的两个底角相等(简写成“等边对等角”)。
结论(3)、(4)、(5)用一句话可以归结为什么
等腰三角形的顶角平分线,底边上的高和底边上的中线互相重合 (简称“三线合一”)。
例l已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。
本题较易,可由学生口述,教师板书解题过程。
引申:已知:在△ABC中,AB=AC,∠A=80°,求∠B和∠C的度数。
小结:在等腰三角形中,已知一个角,就可以求另外两个角。
三、练习巩固
P84 练习1、2、3
补充:
填空:在△ABC中,AB=AC,D在BC上,
1.如果AD⊥BC,那么∠BAD=∠______,BD=_______
2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______
3.如果BD=CD,那么∠BAD=∠_______,AD⊥______
四、小结
本节课,我们学习了等腰三角形的性质: ( http: / / www.21cnjy.com )等腰三角形的两底角相等 (简写“等边对等角”);等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”),它们对今后的学习十分重要,因此要牢记并能熟练应用。用数学语言表述如下:
1.△ABC中,如果AB=AC,那么∠B=∠C。
2.△ABC中,如果A月=AC,D在B ( http: / / www.21cnjy.com )C上,那么由条件(1)∠BAD=∠CAD,(2)AD⊥AC,(3)BD=CD中的任意一个都可以推出另外两个。
五、作业
练习第1题。
课后反思:
1.等腰三角形性质 (2)
教学目标
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
重点、难点
重点,等腰三角形的性质及其应用。
难点:简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的
等腰三角形的两个底角相等,也可以简称“等 ( http: / / www.21cnjy.com )边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中 ( http: / / www.21cnjy.com )线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的
等边三角形是特殊的等腰三角形,由等腰 ( http: / / www.21cnjy.com )三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗 如果是,有几条对称轴
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可 ( http: / / www.21cnjy.com )知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样
问题2:求∠1是否还有其它方法
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合()
b.有一个角是60°的等腰三角形,其它两个内角也为60°()
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
四、小结
由等腰三角形的性质可以推出等 ( http: / / www.21cnjy.com )边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业
练习第2、3题。
补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
课后反思:
2.等腰三角形的判定
教学目标
1.通过探索一个三角形是等腰三角形的条件,培养学生的探索能力。
2.能利用一个三角形是等腰三角形的条件,正确判断某个三角形是否为等腰三角形。
重点、难点
重点:让学生掌握一个三角形是等腰三角形的条件和正确应用。
难点:一个三角形是等腰三角形的条件的正确文字叙述。
教学过程
一、复习引入
等腰三角形具有哪些性质
等腰三角形的两底角相等,底边上的高、中线及顶角平分线“三线合一”。
二、新课
对于一个三角形,怎样识别它是不是等腰三角形呢 我们已经知道的方法是看它是否有两条边相等。这一节,我们再学习另一种识别方法。
我们已学过,等腰三角形的两个底角相等,反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗
为了回答这个问题,请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
1.在半透明纸上画一个线段BC。
2.以BC为始边,分别以点B和点C为顶点,用量角器画两个相等的角,两角终边的交点为A。
3.用刻度尺找出BC的中点D,连接AD,然后沿AD对折。
问题1:AB与AC是否重合
问题2:本实验的条件与结论如何用文字语言加以叙述
如果一个三角形有两个角相等,那么这两个角所对的边也相等,简写成“等角对等边”。
也就是说,如果一个三角形中有两个角相等,那么它就是等腰三角形。一个三角形是等腰三角形的条件,可以用来判定一个三角形是否为等腰三角形。
例1.在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么
问题3:三个角都是60°的三角形是等边三角形吗 你能说明理由吗
等腰直角三角形:顶角是直角的等腰三角形是等腰直角三角形,如图所示。
问题4:你能说出等腰直角三角形各角的大小吗
问题5:请你画一个等腰直角三角形,使∠C=90°,CD是底边上的高,数一数图中共有几个等腰直角三角形
三、练习巩固
P99练习l、2、3题。
四、小结
这节课,,我们学习了一个三 ( http: / / www.21cnjy.com )角形是等腰三角形的条件:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),此条件可以做为判断一个三角形是等腰三角形的依据。因此,要牢记并能熟练应用它。
五、作业
习题第4、5题。
课后反思:
13.4 尺规作图
第一课时:1.作一条线段等于已知线段 2、作一个角等于已知角
一、教学目标?
1.了解尺规作图.?
2.掌握尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角.
3.尺规作图的步骤.?会写已知、求作和作法.?
二、教学重点?画图,写出作图的主要画法.
三、教学难点?写出作图的主要画法,应用尺规作图.
四、教学方法?引导法,演示法.
五、教学过程?
(一)引入?直尺、量角器、圆规都是都是大家很熟悉的工具,大家都知道用直尺可以画线,用量角器可以画角,用圆规可以画圆.?
请大家画一条长4cm的线段,画一个48°的角,画一个半径为3cm的圆.?
如果只用无刻度的直尺和圆规,你还能画出符合条件的线段、角吗 ?
实际上,只用无刻度的直尺和圆规作图,在数学上叫做尺规作图.?
(二)新课?
1.画一条线段等于已知线段.?
请同学们探索用直尺和圆规准确地画一条线段等于已知的线段.?
已知线段a,用直尺和圆规准确地画一条线段等于已知线段a.
请同学们讨论、探索、交流、归纳出具体的作图方法.?
例1 已知三边作三角形.?
已知:线段a、b、c.(画出三条线段a、b、c)?
求作:△ABC,使得三边为线段a、b、c.?
作法:(1)画一条线段AB,使得AB=c.?
(2)以点A为圆心,以线段b的长为半径画圆弧;再以点B为圆心,以线段a的长为半径画圆弧;两弧交于点C.?
(3)连结AC,BC.?
△ABC即为所求.?
2.画一个角等于已知角.
请同学们探索用直尺和圆规准确地画一个角等于已知角.
已知角∠MPN,用直尺和圆规准确地画一个角等于已知角∠MPN.?
请同学们讨论、探索、交流、归纳出具体的作图方法.?
作法:?(1)画射线OA.?
(2)以角∠MPN的顶点P为圆心,以适当长为半径画弧,交∠MPN的两边于E、F.?
(3)以点O为圆心,以PE长为半径画弧,交OA于点C.?
(4)以点C为圆心,以EF长为半径画弧,交前一条弧于点D.?
(5)经过点D作射线OB.?
∠AOB就是所画的角.(如图)
注意:几何作图要保留作图痕迹.?
探索如何过直线外一点做已知直线的平行线;?
请同学们讨论、探索、交流、归纳出具体的作图方法.
例2 根据下列条件作三角形.?
(1)已知两边及夹角作三角形;? (2)已知两角及夹边作三角形;?
请同学们讨论、探索、交流、归纳出具体的作图方法(顺序).?
练习:教材第82页练习第1、2题.?
(三)小结?请同学们自己对本课内容进行小结.?
(四)作业?习题1、2题.
课后反思:
第二课时:3.作已知角的平分线
一、教学目标?
1.进一步熟练尺规作图.? 2.掌握尺规的基本作图:画角平分线.?
3.进一步学习解尺规作图题,会写已知、求作和作法,以及掌握准确的作图语言.
4.运用尺规基本作图解决有关的作图问题.?
二、教学重点?分析尺规基本作图问题的解决过程,写好作图的主要画法,并完成作图.
三、教学难点?分析实际作图问题,运用尺规的基本作图,写出作图的主要画法.
四、教学方法?引导法,演示法,分析法,讨论法.
五、教学过程?
(一)引入?我们已熟悉尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角,那么利用尺规还能画角平分线吗 ?
(二)新课?
前面我们学习了用尺规画线段,那么你能利用尺规作图将一个角两等分吗
利用尺规作图画角平分线.?
请同学们探索用直尺和圆规准确地画出一个角的平分线.?
已知∠AOB,用直尺和圆规准确地画出已知∠AOB的平分线.?
请各小组同学讨论、探索、交流、归纳出具体的作图方法.?
例1 已知∠α与∠β,求作一个角,使它等于(∠α+∠β)的一半.?
分析:要完成这个作图,先作出等于(∠α+∠β)的角,再作平分线即可.? 已知、求作、作法由学生自行完成.(略)?
例2 已知三角形中的一个角,此角的平分线长,以及这个角的一边长,求作三角形.
分析:首先作出符合条件的图形草图,分析图形 ( http: / / www.21cnjy.com )的特征,然后确定作图的顺序,写出已知、求作、作法,作图中遇到属于基本作图的,只叙述基本作图即可.
已知:∠α,以及线段b、c(b<c).?
求作:△ABC,使得∠BAC=∠α,AB=c,∠BAC的平分线AD=b.?
作法:(1)作∠MAN=∠α.?
(2)作∠MAN的平分线AE.?
(3)在AM上截取AB=c,在AE上截取AD=b.
(4)连结BD,并延长交AN于点C.?
△ABC就是所画的三角形.(如图)?
例3 已知三角形的一边及这边上的中线和高(中线长大于高),求作三角形.同学们先自主思考探索,然后各小组同学讨论、交流、归纳出具体的作图方
法.再请学生代表上黑板示范,并解释原由.?
例4 已知直线和直线外两点(过这两点的直线与已知直线不垂直),利用尺规作图在直线上求作一点,使其到直线外已知两点的距离和最小.?
同学们先自主思考,然后各小组交流意见,完成作图.?
练习教材练习第1、2题.?
(三)小结?
1.掌握一些规范的几何作图语句.?
2.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述即可.?
4.解决尺规作图问题,先作出符合条件的图形草图,再确定具体的作图方法.?
(四)作业?教材第5题.
课后反思:
第3课时:4.经过一已知点作已知直线的垂线;5.作已知线段的垂直平分线。
一、教学目标?
1.进一步熟练尺规作图.?
2.掌握尺规的基本作图:4.经过一已知点作已知直线的垂线;5.作已知线段的垂直平分线.
3.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.?
二、教学重点 画图,写出作图的主要画法.
三、教学难点?写出作图的主要画法,应用尺规作图.
四、教学方法?引导法,演示法,分析法,探索法.
五、教学过程?
(一)引入?我们已熟悉尺规的两个基本作图:画线段,画角.?
那么利用尺规还能解决什么作图问题呢 ?
(二)新课?
1.画直线的垂线.?
请同学们探索用直尺和圆规准确地画出一条直线的垂线.?
请同学们讨论、探索、交流、归纳出具体的作图方法.?
实际上,画出一条直线的垂线,就是转化为画线段的垂直平分线.?
例1 过直线外一点作直线的垂线.?
已知:直线a、及直线a外一点A.(画出直线a、点A)?
求作:直线a的垂线直线b,使得直线b经过点A.?
作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.?
(2)以点C为圆心,以AD长为半径在直线另一侧画弧.?
(3)以点D为圆心,以AD长为半径在直线另一 ( http: / / www.21cnjy.com )侧画弧,交前一条弧于点B.? (4)经过点A、B作直线AB.?直线AB就是所画的垂线b.(如图)?
2.画线段的垂直平分线.?
请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线.
已知线段a,用直尺和圆规准确地画出已知线段a的垂直平分线.?
解决这一问题,要利用好线段垂直平分线的性质.?
请同学们讨论、探索、交流、归纳出具体的作图方法.?
例2 已知底边及底边上的高作等腰三角形.?
分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形.
已知:底边a、及底边上的高h.(画出两条线段a、h)?
求作:△ABC,使得一底边为a、底边上的高为h.?
作法:(略).?
(三)小结?请同学们自己对本课内容进行小结.?
(四)作业?习题3、4题.
课后反思:
13.5逆命题与逆定理
1.互逆命题与互逆定理
教学目的:1、理解互逆命题与互逆定理 2、正确应用互逆命题与互逆定理
重点与难点:区分互逆命题与互逆定理
教学过程:
我们已经知道,可以判断正确或错误的句子叫做命题.例如“两直线平行,内错角相等”、“内错角相等,两直线平行”都是命题.
上面两个命题的题设和结论恰好互换了位置.
一般来说,在两个命题中,如果第一个命题的题设 ( http: / / www.21cnjy.com )是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.
命题“两直线平行,内错角相等”的
题设为___________________________;结论为___________________________.
因此它的逆命题为_______________________________________.
每一个命题都有逆命题,只要将 ( http: / / www.21cnjy.com )原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题.但是原命题正确,它的逆命题未必正确.例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题.
如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.
我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理.
一个假命题的逆命题可以是真命题,甚至可以是定理.例如“相等的角是对顶角”是假命题,但它的逆命题“对顶角相等”是真命题,且是定理.
练习
1. 说出下列命题的题设和结论,并说出它们的逆命题:
(1) 如果一个三角形是直角三角形,那么它的两个锐角互余;
(2) 等边三角形的每个角都等于60°;
(3) 全等三角形的对应角相等;
(4) 到一个角的两边距离相等的点,在这个角的平分线上;
(5) 线段的垂直平分线上的点到这条线段的两个端点的距离相等.
2. 举例说明下列命题的逆命题是假命题:
(1) 如果一个整数的个位数字是5,那么这个整数能被5整除;
(2) 如果两个角都是直角,那么这两个角相等.
3. 在你所学过的知识内容中,有没有原命题与逆命题都正确的例子(即互逆定理)?试举出几对.
课堂小结:总结一下你所学过的知识
作业:练习
课后反思:
2. 线段垂直平分线
教学目的:线段的垂直平分线定理及逆定理
重点与难点:线段的垂直平分线定理及逆定理的应用
教学过程:
我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,
并知道线段的垂直平分线上的点到这条线段的两个端点的距离相等.我们也可用逻辑推理的方法证明这一结论.
如图19.4.7,设直线MN是线段AB的垂直平分线,点C是垂足.点P是直线MN上任意一点,连结PA、PB.证明PA=PB.
已知: MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.
求证: PA=PB.
分析 图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得PA=PB.于是就有定理:
线段的垂直平分线上的点到这条线段的两个端点的距离相等.
此定理的逆命题是“到一条线段的两 ( http: / / www.21cnjy.com )个端点的距离相等的点在这条线段的垂直平分线上”,这个命题是否是真命题呢?即到一条线段的两个端点的距离相等的点是否一定在这条线段的垂直平分线上呢?我们也可以通过“证明”来解答这个问题.
已知: 如图19.4.8,QA=QB.
求证: 点Q在线段AB的垂直平分线上.
分析: 为了证明点Q在线段AB的垂直平分线 ( http: / / www.21cnjy.com )上,可以先经过点Q作线段AB的垂线,然后证明该垂线平分线段AB;也可以先平分线段AB,设线段AB的中点为点C,然后证明QC垂直于线段AB.于是就有定理:
到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
上述两条定理互为逆定理,根据上述两条定理,我们很容易证明: 三角形三边的垂直平分线交于一点.
从图19.4.9中可以看出,要证明三条垂直平分线交于一点,只需证明其中的两条垂直平分线的交点一定在第三条垂直平分线上就可以了.
试试看,现在你会证了吗?
课堂练习
1. 如图,已知点A、点B以及直线l,在直线l上求作一点P,使PA=PB.
(第1题)
(第2题)
(第2题)
EMBED Word.Picture.8
(第3题)
2. 如图,已知AE=CE, BD⊥AC.求证: AB+CD=AD+BC.
3. 如图,在△ABC上,已知点D在BC上,且BD+AD=BC.求证: 点D在AC的垂直平分线上.
课堂小结:总结一下你所学过的知识
作业:练习题 5、6
课后反思:
3. 角平分线
教学目的:角平分线定理及逆命题的应用
重点与难点:角平分线定理及逆命题的应用
教学过程:
回 忆
我们知道角平分线上的点到这个角的两边的距离相等.角平分线的这条性质是怎样得到的呢?
如图19.4.4,OC是∠AOB的平分 ( http: / / www.21cnjy.com )线,点P是OC上任意一点,PD⊥OA, PE⊥OB,垂足分别为点D和点E.当时是在半透明纸上描出了这个图,然后沿着射线OC对折,通过观察,线段PD和PE完全重合.于是得到PD=PE.
与等腰三角形的判定方法相类似,我们 ( http: / / www.21cnjy.com )也可用逻辑推理的方法加以证明.图中有两个直角三角形△PDO和△PEO,只要证明这两个三角形全等,便可证得PD=PE.
于是就有定理:
角平分线上的点到这个角的两边的距离相等.
此定理的逆命题是“到一个角的两边 ( http: / / www.21cnjy.com )的距离相等的点在这个角的平分线上”,这个命题是否是真命题呢?即到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?我们可以通过“证明”来解答这个问题.
已知: 如图19.4.5,QD⊥OA, QE⊥OB,点D、E为垂足,QD=QE.
求证: 点Q在∠AOB的平分线上.
分析: 为了证明点Q在∠AOB的平分线上,
可以作射线OQ,然后证明Rt△DOQ≌Rt△EOQ,从而得到∠AOQ=∠BOQ.
于是就有定理:
到一个角的两边距离相等的点,在这个角的平分线上.
上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明: 三角形三条角平分线交于一点.
从图19.4.6中可以看出,要证明三条角平分线交于一点,只需证明其中的两条角平分线的交点一定在第三条角平分线上就可以了.请你完成证明.
课堂练习:
1.如图,在直线l上找出一点P,使得点P到∠AOB的两边OA、OB的距离相等.
2.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证: 点F在∠DAE的平分线上.
课堂小结:总结一下你所学过的知识。
作业:习题。4题
课后反思: