17.2 勾股定理的逆定理(1)
学习目标
知识:1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
能力:探究勾股定理的逆定理的证明方法。
情感:理解原命题、逆命题、逆定理的概念及关系。
学习重点:
1.重点:掌握勾股定理的逆定理及证明。
学习难点:
1.勾股定理的逆定理的证明。
【导课】
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
【多元互动 合作探究】
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2(P74探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。
⑶由于a2+b2= (n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。
【训练检测 目标探究】
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a=,b=,c=
D.a:b:c=2:3:4
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=,b=,c=; ⑵a=5,b=7,c=9;
⑶a=2,b=,c=; ⑷a=5,b=,c=1。
【迁移应用 拓展探究】
基础训练有关训练
布置作业
板书设计
教后反思
授课时间: 累计课时:
第十七章 勾股定理
17.2 勾股定理的逆定理(2)
学习目标
知识:灵活应用勾股定理及逆定理解决实际问题。
能力:进一步加深性质定理与判定定理之间关系的认识。
情感:
学习重点:
1.重点:灵活应用勾股定理及逆定理解决实际问题。
学习难点:
1.灵活应用勾股定理及逆定理解决实际问题。
【导课】
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
【多元互动 合作探究】
例1(P75例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略。
【训练检测 目标探究】
1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?
3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
【迁移应用 拓展探究】
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
2.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
布置作业
板书设计
教后反思
授课时间: 累计课时:
第十七章 勾股定理
17.2 勾股定理的逆定理(3)
学习目标
知识:应用勾股定理的逆定理判断一个三角形是否是直角三角形。
能力:灵活应用勾股定理及逆定理解综合题。
情感:进一步加深性质定理与判定定理之间关系的认识。
学习重点: 利用勾股定理及逆定理解综合题。
学习难点: 利用勾股定理及逆定理解综合题。
教学流程
【导课】
勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
【多元互动 合作探究】
例1(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。
试判断△ABC的形状。
分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD的面积。
分析:⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);
⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面积公式可解,或利用三角形的面积。
例3(补充)已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
分析:∵AC2=AD2+CD2,BC2=CD2+BD2
∴AC2+BC2=AD2+2CD2+BD2
=AD2+2AD·BD+BD2
=(AD+BD)2=AB2
【训练检测 目标探究】
1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形;
B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。
3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。
求:四边形ABCD的面积。
4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD。
求证:△ABC中是直角三角形。
【迁移应用 拓展探究】
1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。
2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。
3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。
求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。
布置作业
板书设计
教后反思
授课时间: 累计课时:
17.2 勾股定理的逆定理(一)
教案总序号:13 时间:
一、教学目的
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、例题的意图分析
例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例2通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
四、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
五、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。
⑶由于a2+b2= (n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。
六、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a=,b=,c=
D.a:b:c=2:3:4
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=,b=,c=; ⑵a=5,b=7,c=9;
⑶a=2,b=,c=; ⑷a=5,b=,c=1。
七、课后练习,
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有 ,但任何一个定理未必都有 。
⑵“两直线平行,内错角相等。”的逆定理是 。
⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;
若a2<b2-c2,则∠B是 。
⑷若在△ABC中,a=m2-n2,b=2mn,c= m2+n2,则△ABC是 三角形。
3.若三角形的三边是 ⑴1、、2; ⑵; ⑶32,42,52 ⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个 C.4个 D.5个
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;
⑶a=2,b=,c=4; ⑷a=5k,b=12k,c=13k(k>0)。
八、参考答案:
课堂练习:
1.对,错,错,对; 2.D;
3.D; 4.⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A。
课后练习:
1.⑴如果a2>0,那么a3>0;假命题。
⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题。
⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题。
⑷两条相等的线段一定关于某条直线对称;假命题。
2.⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角。
3.B 4.⑴是,∠B;⑵不是,;⑶是,∠C;⑷是,∠C。
课后反思:
17.2 勾股定理的逆定理(二)
教案总序号:14 时间:
一、教学目的
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
三、例题的意图分析
例1(见教材例题)让学生养成利用勾股定理的逆定理解决实际问题的意识。
例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
四、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
五、例习题分析
例1(见教材)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略。
六、课堂练习
1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?
3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
七、课后练习
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
2.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
八、参考答案:
课堂练习:
1.向正南或正北。
2.能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2;
3.由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°。
课后练习:
1.6米,8米,10米,直角三角形;
2.△ABC、△ABD是直角三角形,AB和地面垂直。
3.提示:连结AC。AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米。
课后反思:
17.2 勾股定理的逆定理(三)
教案总序号:15 时间:
一、教学目的
1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。
2.灵活应用勾股定理及逆定理解综合题。
3.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:利用勾股定理及逆定理解综合题。
2.难点:利用勾股定理及逆定理解综合题。
三、例题的意图分析
例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。
例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。
例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。
四、课堂引入
勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。
五、例习题分析
例1(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。
试判断△ABC的形状。
分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD的面积。
分析:⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);
⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面积公式可解,或利用三角形的面积。
例3(补充)已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
分析:∵AC2=AD2+CD2,BC2=CD2+BD2
∴AC2+BC2=AD2+2CD2+BD2
=AD2+2AD·BD+BD2
=(AD+BD)2=AB2
六、课堂练习
1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形;
B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。
3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。
求:四边形ABCD的面积。
4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD。
求证:△ABC中是直角三角形。
七、课后练习,
1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。
2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。
3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。
求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。
八、参考答案:
课堂练习:
1.C;
2.△ABC是等腰直角三角形;
3.
4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=
AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。
课后练习:
1.6;
2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。
3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。
4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2 。
课后反思:
课件22张PPT。勾股定理的逆定理古埃及人曾用下面的方法得到直角按照这种做法真能得到一个直角三角形吗? 古埃及人曾用下面的方法得到直角:用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
下面的三组数分别是一个三角形的三边长a,b,c:5,12,13; 7,24,25; 8,15,17。动手画一画勾股定理的逆命题勾股定理互逆命题∵ ∠ C’=900∴ A’B’2= a2+b2∵ a2+b2=c2∴ A’B’ 2=c2∴ A’B’ =c∵ 边长取正值∴ △ ABC ≌△ A’B’C’(SSS)∴ ∠ C= ∠ C’(全等三角形对应角相等)∴ ∠C= 900已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2求证:△ ABC是直角三角形证明:画一个△A’B’C’,使∠ C’=900,B’C’=a, C’A’=b在△ ABC和△ A’B’C’中∴ △ ABC是直角三角形(直角三角形的定义)勾股定理的逆命题勾股定理的逆命题勾股定理互逆命题逆定理定理驶向胜利的彼岸定理与逆定理我们已经学习了一些互逆的定理,如:
勾股定理及其逆定理,
两直线平行,内错角相等;内错角相等,两直线平行.想一想:
互逆命题与互逆定理有何关系?如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.(1)两条直线平行,内错角相等.
(2)如果两个实数相等,那么它们的平方相等.
(3)如果两个实数相等,那么它们的绝对值相等.
(4)全等三角形的对应角相等.说出下列命题的逆命题.这些命题的逆命题成立吗?逆命题: 内错角相等,两条直线平行. 成立逆命题:如果两个实数的平方相等,那么这两个实数相等. 不成立逆命题:如果两个实数的绝对值相等,那么这两个实数相等. 不成立逆命题:对应角相等的两个三角形是全等三角形. 不成立感悟: 原命题成立时, 逆命题有时成立, 有时不成立一个命题是真命题,它逆命题却不一定是真命题.例1 判断由a、b、c组成的三角形是不是直角三角形:
(1) a=15 , b =8 , c=17(2) a=13 , b =15 , c=14分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。解:∵152+82=225+64=289
172=289
∴ 152+82=172
∴这个三角形是直角三角形 下面以a,b,c为边长的三角形是不是直角三角形?如果是那么哪一个角是直角?(1) a=25 b=20 c=15 ____ _____ ;(2) a=13 b=14 c=15 ____ _____ ;(4) a:b: c=3:4:5 _____ _____ ;是是不是 是∠ A=900∠ B=900∠ C=900(3) a=1 b=2 c= ____ _____ ; 像25,20,15,能够成为直角三角形三条边长的三个正整数,称为勾股数.BA、锐角三角形 B、直角三角形C、钝角三角形 D、等边三角形1.
2.已知:如图,四边形ABCD中,∠B=900,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?
S四边形ABCD=36分析:先来判断a,b,c三边哪条最长,可以代m,n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。∴△ABC是直角三角形1、请你写出三组勾股数;
2、一组勾股数的倍数一定是勾股数吗?为什么?4、 已知a,b,c为△ABC的三边,且 满足
a2+b2+c2+338=10a+24b+26c.
试判断△ABC的形状.5、△ABC三边a,b,c为边向外作正方形,正三角形,以三边为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?
ACabcS1S2S3BABCabcS1S2S3自主评价:1、勾股定理的逆定理2、什么叫做互逆命题、原命题与逆命题3、什么称为互为逆定理。作业:34页,习题17.2第1题、第2题勾股定理的逆命题如果三角形的较长边的平方等于其它两条较短边的平方和,那么这个三角形是直角三角形。
已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2求证: △ ABC是直角三角形证明:画一个△A’B’C’,使∠ C’=900,B’C’=a, C’A’=babA’B’C’……请谈谈你的收获