14-15学年八年级数学(北师大版,下册)课件:2-5一元一次不等式与一次函数(4份打包)

文档属性

名称 14-15学年八年级数学(北师大版,下册)课件:2-5一元一次不等式与一次函数(4份打包)
格式 zip
文件大小 4.4MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2015-03-14 10:19:10

文档简介

课件10张PPT。北师大版 八年级 下册1.5 一元一次不等式与一次函数
(第一课时)第一章 一元一次不等式和一元一次不等式组问题1:
作出函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?导探激励由上述讨论易知:函数、(方程) 不等式“关于一次函数的值的问题”
可变换成 “关于一次不等式的问题” ; 反过来, “关于一次不等式的问题”
可变换成 “关于一次函数的值的问题”。 因此, 我们既可以运用函数图象解不等式 ,
也可以运用解不等式帮助研究函数问题 ,
二者相互渗透 ,互相作用。 不等式与函数 、方程是紧密联系着
的一个整体 。想一想: 如果y=-2x-5,
那么当x取何
值时,y>0?
1234-1-2-3-1-2-3-401234x-5yy=-2x-5解:由图可知,当x<-2.5时,y>0做一做:
兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题:
(1)何时哥哥追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
(5 ) 你是怎样求解的?与同伴交流。x-20108642100908070605040302010/sy/myyyy哥哥弟弟(1)何时哥哥追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
(5 ) 你是怎样求解的?与同伴交流。随堂练习:
已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2,你是怎样做的?与同伴交流。课堂小结:作业:
必作题: 读一读
习题1.6 1,2
通过本节课的学习,你有哪些收获?再见课件10张PPT。北师大版 八年级 下册2.5 一元一次不等式与一次函数
(第一课时)第二章 一元一次不等式和一元一次不等式组我们知道,一次函数的图象是一条直线。 作出一次函数 y = 2x - 5
的图象如右,观察图象回答下列问题:(1) x 取哪些值时, y=0 ?(2) x 取哪些值时, y>0 ?x > 2.5 时 , y > 0 ;x = 2.5 时 , y = 0 ;(3) x 取哪些值时, y<0 ?x < 2.5 时 , y < 0 ;(4) x 取哪些值时, y>3 ?x > 4 时 , y > 3 ;将“一次函数值的问题”改为“一次不等式的问题” 作出一次函数 y = 2x - 5 的图象如右,观察图象回答下列问题:(1) x 取哪些值时, y =0 ?(2) x 取哪些值时, y >0 ?(3) x 取哪些值时, y <0 ?(4) x 取哪些值时, y >3 ?y所以,将(1)~(4) 中的 y 换成 2x-5,2x-52x-52x-52x-5则, 原题“关于一次函数的值的问题”就变成了“关于一次不等式的问题”变换成 “关于一次函数的值的问题”?由上述讨易知: 函数、(方程) 不等式“关于一次函数的值的问题”
可变换成 “关于一次不等式的问题” ; 反过来, “关于一次不等式的问题”
可变换成 “关于一次函数的值的问题”。 因此, 我们既可以运用函数图象解不等式 ,
也可以运用解不等式帮助研究函数问题 ,
二者相互渗透 ,互相作用。 不等式与 函数 、方程 是紧密联系着
的一个整体 。 如果 y=-2x-5 , 那么当 x 取何值时 , y>0 ?你解答此道题, 可有几种方法 ? 将函数问题转化为不等式问题.即 解不等式-2x- 5 > 0 ;法二:图象法。< -2.5时 y>0 .用“函数图象法”及“解不等式法”解函数问题 兄弟俩赛跑,哥哥先让弟弟跑 9 米,然后自己才开始跑。
已知弟弟每秒跑 3 米,哥哥每秒跑 4 米。
列出函数关系式,画出函数图象,观察图象回答下列问题:做 一 做 (1) 何时弟弟跑在哥哥前面?用多种方法解行程问题P 20y1= ,y2= . (2) 何时哥哥跑在弟弟前面? (3) 谁先跑过 20米?谁先跑过 100米?你是怎样求的?与同伴交流。9+3x4x答案: (1) 从哥哥起跑开始 , 弟弟跑在哥哥前面;
(2) 从哥哥起跑开始 , 哥哥跑弟弟在前面;
(3) 先跑过 20米, 先跑过 100米 .9s 前9s 后弟弟哥哥2、先通过列方程找到追及弟弟的时间。(1)何时哥哥追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑100m?
(5 ) 你是怎样求解的?与同伴交流。1、已知 y1= -x+3,y2=3x-4 ,当 x 为何值时,y1>y2 ?
你是怎样做的 ? 与同伴交流.答案: 一次函数(值)的变化对应着相应自变量的取值范围,
这个取值范围, 既可从一次函数的图象上直观看出(近似值),
也可通过解(方程)不等式而得到(精确值).“一次函数问题”可转换成 “一次不等式的问题” ;反过来,
“一次不等式的问题”可转换成 “一次函数的问题”。 我们既可以运用函数图象解不等式 ,
也可以运用解不等式帮助研究函数问题 ,
二者相互渗透 ,互相作用。
不等式与 函数 、方程 是紧密联系着
的一个整体 。 对于行程问题 , 应首先建立起“路程关于时间的函数关系式”,
再通过解不等式得到问题的解;
或先通过解方程求出追及(相遇)的时刻, 再解答相应的问题.课件13张PPT。2.5 一元一次不等式与一次函数 (第二课时) 北师大版 八年级 下册第二章 一元一次不等式和一元一次不等式组 某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠。做一做甲商场的优惠条件是:
第一台按原报价收费,其余每台优惠25%.那么商场的收费y1(元)与所买电脑台数x之间的关系式是:
乙商场的优惠条件是: 每台优惠20%.那么乙商场的收费 (元)与所买电脑台数x之间的关系式是: 请你决策(1) 什么情况下到甲商场购买更优惠?(2) 什么情况下到乙商场购买更优惠?(3) 什么情况下两家商场的收费相同?一元一次不等式与一次函数在决策型应用题中的应用实际问题写出两个函数表达式 不等式解不等式画出图象分析图象解决问题 某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商:例题解析该选择哪一家旅行社呢?解:设该单位参加这次旅游的人数是 人,选择甲旅行社时,所需的费用为 元,选择乙旅行社时,所需的费用为 元,则:y1 = 200×0.75x, 即y1 = 150xy2 = 200×0.8(x-1), 即y2= 160x-160由y1 = y2,,得150x=160x-160,解得x=16由y1 > y2,,得150x>160x-160,解得x<16
由y1 < y2,,得150x<160x-160,解得x>16嗨!搞定! 因为参加旅游的人数为10~25人,所以:
当x=16时, 甲、乙两家旅行社的收费相同;
当16 当10≤x<16时, ,选择乙旅行社费用较少。 (深圳南山区)某地电话拨号入网有两种收费方式,用户可以任选其一: (A)计时制:0.05元/分; (B) 包月制:50元/月(限一部个人住宅电话上网). 此外,每一种上网方式都得加收通信费0.02元/分.
(1)(4分)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时)之间的函数关系式;
(2)(1分)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
中考链接解: ⑴ 依题意,得
计时制: 即 …… (2分)
包月制: 即 …… (4分)
⑵ 当时
计时制: (元)
包月制: (元)
若某用户估计一个月上网20小时,采
用包月制较为合算. …… ( 5分)(江苏省)已知A市和B市各存机床12台和6台,现运往C市10台、D市8台.若从A市运一台到C市、D市各需4万元和8万元,若从B市运一台到C市、D市各需3万元和5万元.
(1)设B市运往C市x台,求总费用y关于x的函数关系式.
(2)若总费用不超过95万元,问共有几种调运方法?
(3)求总费用最低的调运方法,最低费用是多少万元? 解:(1)由题意,得B市运往D市(6-x)台,A市运往C市(10-x)台,A市运往D市[12-(10-x)]台,
于是y=3x+(6-x)×5+(10-x)×4+(2+x)×8,
即y=2x+86(0≤x≤6).
(2)根据题意,得2x+86≤95.
解得x≤4.5,由实际意义,应取x≤4.
结合原函数的x取值范围,得0≤x≤4.
所以x可取0,1,2,3,4这五个数,即总费用不超过95万元的调运方法共有五种.
(3)由一次函数y=2x+86的性质知,
y随x的增大而增大,而0≤x≤4,
所以x=0时,y取最小值86.
即最低费用是86万元,调运方法是B市运往D市6台,A市运往C市10台、运往D市2台.说明: 本题用到了某个范围内的一次函数的最值的性质:
1、当m≤x≤n(m<n)、k>0时,
若x=m,则y=kx+b取得最小值km+b;
若x=n,则y=kx+b取最大值kn+b.
2、当m≤x≤n(m<n)、k<0时,
若x=m,则y=kx+b取得最大值km+b;
若x=n,则y=kx+b取最小值kn+b. 说说你这节课的收获……课件6张PPT。2.5 一元一次不等式与一次函数 (第二课时) 北师大版 八年级 下册第二章 一元一次不等式和一元一次不等式组回顾思考4、某商品原价200元,现打七五折,则现价
是 元1、一元一次不等式、一次函数(方程)的关系2、若y1= -2x-2,y2=3x+3,试确定当x取何值时,y13、某商品原价60元,现优惠25%,则现价
是 元45150 例题1:某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以先免去一位游客的旅游费用,其余的游客八折优惠。该单位选择哪一家旅行社支付的旅游费用较少? 例题评析 例题2:某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠。
甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买的电脑台数x之间的关系是 。
乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买的电脑台数x之间的关系 是 。
(1)? 什么情况下到甲商场购买更优惠?
(2)???什么情况下到乙商场购买更优惠?
3)什么情况下两家商场的收费相同? 课堂练习 红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票
(1)比买普通票总共便宜多少钱?
(2)不足20人时,多少人买20人的团体票才比普通票便宜? 再见