2.5一元一次不等式与一次函数 第2课时(课件+教案+资源)

文档属性

名称 2.5一元一次不等式与一次函数 第2课时(课件+教案+资源)
格式 zip
文件大小 205.4KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2015-04-28 10:12:01

文档简介

补充习题
1、y=x+2的图象如图所示,当y>0时,x的值是( )
A、 B、 C、 D、
2、观察函数y1和y2的图象, 当x=1,两个函数值的大小为 ( )
(A) y1> y2 (B) y1< y2 (C) y1=y2 (D) y1≥ y2
3、如图,观察两个一次函数在同一直角坐标系中的图象,并填空:
(1)当___________时,等于的值;
(2)当___________时,大于的值;
(3)当___________时,小于的值;
4、某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元.
(1)分别写出顾客甲按A、B两种方式计费的上网费y元与上网时间x分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;
(2)如何选择计费方式能使甲上网费更合算?
5、某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图是裁法一的裁剪示意图)
裁法一
裁法二
裁法三
A型板材块数
1
2
0
B型板材块数
2
m
n
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A.B两种型号的板材刚好够用.
(1)上表中,m = ,n = ;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?
6、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标和AB所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?
7、某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?
8邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离(千米)和小王从县城出发后所用的时间(分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:
(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.
(2)小王从县城出发到返回县城所用的时间.
(3)李明从A村到县城共用多长时间?
9、如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:
(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式.(3分)
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度.(4分)
(3)从图象中你还能获得什么信息?请写出其中的一条.(3分)
10、南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式:y乙=kx.
(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;
(2)如果狮山公园铺设广场砖的面积为1600m2,那么公园应选择哪个工程队施工更合算?
第二章 一元一次不等式与一元一次不等式组
5.一元一次不等式与一次函数(二)
湖北省宜昌市鸦鹊岭初级中学 李卫国
一、学生知识状况分析
学生的知识技能基础:学生在八年级上学期已经学习过一次函数,会求一次函数的表达式和画一次函数的图象,在本章上一节课中,又学习了一元一次不等式与一次函数的关系,结合一元一次不等式与一次函数的图象解决实际问题,具备了一定的数形结合意识。
学生活动经验基础:在相关知识的学习过程中,学生已经会利用一元一次不等式与一次函数的关系解决一些简单的实际问题,感受到了一元一次不等式与一次函数的关系解决问题的重要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的小组合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本节课是八下第一章第五节《一元一次不等式与一次函数》第二课时的内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。教科书基于学生对一元一次不等式与一次函数的关系认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:
1、掌握一元一次不等式与一次函数的关系,会运用不等式解决函数有关问题。
2、通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。
3、感知不等式、函数、方程的不同作用与内在联系,并渗透“数形结合”思想。
三、教学过程分析
本节课设计了五个教学环节:第一环节:回顾思考;第二环节:合作探究;第三环节:巩固练习;第四环节:课堂小结;第五环节:当堂作业。
第一环节:回顾思考
活动内容:
上节课我们初步感知了一元一次不等式、一次函数和一元一次方程的关系,并用其解决了一些简单的实际问题,今天我们继续用它们的关系来解决较为复杂的实际问题。首先请同学们完成下列问题:
1、若y1=-2x-2,y2=3x+3,试确定当x取何值时,y12、某商品原价60元,现优惠25%,则现价是 元
3、某商品原价200元,现打七五折,则现价是 元
学生活动:独立思考4分钟+展示2分钟
活动目的:让学生在回顾旧知的基础上接触新知,有利于学生的自然过渡,减小梯度。
活动效果:学生对旧知掌握好。
第二环节:合作探究
活动内容(一):
1.[例1]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?
请大家先猜想一下,你选哪家旅行社?再通过计算验证
学生活动:先独立思考5分钟,再小组交流2分钟,展示、评价和补充4分钟。
根据学生交流,展示、评价及补充情况,教师适时点拔思路和给出规范解答过程
分析:首先我们要根据题意,分别表示出两家旅行社关于人数的费用,然后才能比较。而且比较情况只能有三种,即大于,等于或小于.
解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则
y1=200×0.75x=150x
y2=200×0.8(x-1)=160x-160
当y1=y2时,150x=160x-160,解得x=16;
当y1>y2时,150x>160x-160,解得x<16;
当y1<y2时,150x<160x-160,解得x>16.
因为参加旅游的人数为10~25人,所以当x=16时,甲乙两家旅行社的收费相同;当17≤x≤25时,选择甲旅行社费用较少,当10≤x≤15时,选择乙旅行社费用较少.
由此看来,选哪家旅行社不仅与旅行社的优惠政策有关,而且还和参加旅游的人数有关,那么在以后的旅行中,大家一定不要想当然,而是要精打细算才能做到合理开支,现在,你学会利用一元一次不等式与一次函数解决决策型应用题吗?
师生共同梳理利用一元一次不等式与一次函数解决决策型应用题的步骤

活动目的:此处主要是想让学生经历运用不等式解决实际问题的过程,关注学生在解决问题的过程中的方法,途径及规范格式,师生共同梳理利用一元一次不等式与一次函数解决决策型应用题的步骤,以起到示范作用。
活动效果:学生对与生活密切联系的问题比较感兴趣,兴趣是最好的老师,所以在小组交流的过程中,都积极的参与并能大胆提出自己见解,对同学的解题过程也给予了合理评价和中肯的建议。
活动内容(二):
2.下面,我们要到商店走一趟,看看商家又是如何吸引顾客的,借助刚才的经验,我们又应该想何对策呢?
[例2]某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠。
甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%。那么甲商场的收费y1(元)与所买的电脑台数x之间的关系是 。
乙商场的优惠条件是:每台优惠20%。那么乙商场的收费y2(元)与所买的电脑台数x之间的关系是 。
(1)什么情况下到甲商场购买更优惠?
(2)什么情况下到乙商场购买更优惠?
(3)什么情况下两家商场的收费相同?
学生活动:先独立思考4分钟,再小组交流2分钟,展示、评价和补充4分钟。
根据学生展示、评价及补充情况,教师适时点拔思路和给出规范解答过程
解:设要买x台电脑,购买甲商场的电脑所需费用y1元,购买乙商场的电脑所需费用为y2元.则有
y1=6000+(1-25%)(x-1)×6000=4500x+1500
y2=80%×6000x=4800x
(1)当y1<y2时,有4500x+1500<4800x
解得,x>5
即当所购买电脑超过5台时,到甲商场购买更优惠;
(2)当y1>y2时,有4500x+1500>4800x.
解得x<5.
即当所购买电脑少于5台时,到乙商场买更优惠;
(3)当y1=y2时,即4500x+1500=4800x
解得x=5.
即当所购买电脑为5台时,两家商场的收费相同.
活动目的:此处主要是强化作用,让学生经历运用不等式解决实际问题的过程,进一步体会不等式和函数是刻画现实世界的有效数学模型。
活动效果:学生表现得在运用不等式解答问题时,借助函数建立不等关系还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。
第三环节:巩固练习
活动内容:
红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票
(1)比买普通票总共便宜多少钱?
(2)不足20人时,多少人买20人的团体票才比普通票便宜?
学生活动:先独立思考4分钟,展示、评价和补充2分钟。
活动目的:给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会。
解:略.
活动效果:多数学生能达到要求
第四环节:课堂小结
活动内容:
本节课我们进一步巩固了不等式在现实生活中的应用,通过这节课的学习,我们学到了不少知识,真正体会到了学有所用.
活动目的:让学生进一步体会了应用不等式解决现实生活中的问题的作用。
第五环节:布置作业
习题2.7第1、2题.
四、教学反思
1、在一元一次方程的应用中,学生虽然已经接触过一些和例题相类似的应用问题,但在本节需要借助函数关系建立不等式,因此做一做和例题这类应用问题对学生来说可能会有一定难度,教学时要引导学生如何分析此类问题,教给学生方法,渗透数形结合的思想。
2、教学过程中要充分展示学生的思维,及时发现学生分析问题解决问题的独到见解,以及思维的误区,适时引导。通过小组合作学习与评价,帮助学生形成积极主动的求知态度。
3、这堂课让学生感受数学与实际结合的魅力,充分体现了数学是解决现实问题的工具作用,教师角色定位准确,在学生自己通过分析、实践、探究、总结等活动的基础上加以引导,培养了学生发现问题,提出问题和解决问题的能力。
课件10张PPT。第二章 一元一次不等式与 一元一次不等式组 2.5 一元一次不等式 与一次函数(二)湖北省宜昌市鸦鹊岭初级中学 李卫国学习目标:1、掌握一元一次不等式与一次函数的关系,会运用不等式解决函数有关问题。
2、通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。
3、感知不等式、函数、方程的不同作用与内在联系,并渗透“数形结合”思想。
阅读目标:1分钟 例题1:某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以先免去一位游客的旅游费用,其余的游客八折优惠。该单位选择哪一家旅行社支付的旅游费用较少? 合作探究1:先独立思考5分钟,再小组交流2分钟,展示、评价和补充4分钟。 解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则
y1=200×0.75x=150x
y2=200×0.8(x-1)=160x-160
当y1=y2时,150x=160x-160,解得x=16;
当y1>y2时,150x>160x-160,解得x<16;
当y1<y2时,150x<160x-160,解得x>16.
因为参加旅游的人数为10~25人,
所以当x=16时,甲乙两家旅行社的收费相同;
当17≤x≤25时,选择甲旅行社费用较少,
当10≤x≤15时,选择乙旅行社费用较少.一元一次不等式与一次函数在决策型应用题中的应用例题2:某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠。
甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买的电脑台数x之间的关系是 。
乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买的电脑台数x之间的关系是 。
(1)? 什么情况下到甲商场购买更优惠?
(2)???什么情况下到乙商场购买更优惠?
(3) 什么情况下两家商场的收费相同? 合作探究2:先独立思考4分钟,再小组交流2分钟,展示、评价和补充4分钟。 解:设要买x台电脑,购买甲商场的电脑所需费用y1元,购买乙商场的电脑所需费用为y2元.则有
y1=6000+(1-25%)(x-1)×6000=4500x+1500
y2=80%×6000x=4800x
(1)当y1<y2时,有4500x+1500<4800x
解得,x>5
即当所购买电脑超过5台时,到甲商场购买更优惠;
(2)当y1>y2时,有4500x+1500>4800x.
解得x<5.
即当所购买电脑少于5台时,到乙商场买更优惠;
(3)当y1=y2时,即4500x+1500=4800x
解得x=5.
即当所购买电脑为5台时,
两家商场的收费相同.
红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票
(1)比买普通票总共便宜多少钱?
(2)不足20人时,多少人买20人的团体票才比普通票便宜? 巩固练习:先独立思考4分钟,展示、评价和补充2分钟。 课堂小结:自由发言2分钟作业:8分钟
习题2.7 1,2通过本节课的学习,你有哪些收获?