2023-2024学年人教版(2012)七年级上册第二章整式的加减单元测试卷(含答案)

文档属性

名称 2023-2024学年人教版(2012)七年级上册第二章整式的加减单元测试卷(含答案)
格式 docx
文件大小 342.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-11-05 15:05:46

图片预览

文档简介

2023-2024学年 人教版(2012)七年级上册 第二章 整式的加减 单元测试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是,水流速度是,后两船相距( ).
A.90 B. C. D.180
2.一个长方形的长是,宽是,则这个长方形的面积为( )
A. B. C. D.
3.对于多项式,下列说法正确的是( )
A.二次项系数是 B.常数项是 C.次数是 D.项数是
4.计算的结果为( )
A. B. C. D.
5.有理数,,在数轴上的位置如图所示,则化简的结果是( )

A. B. C. D.
6.下列式子,,,,,,中,单项式的个数是( )
A.2个 B.3个 C.4个 D.5个
7.若表示任意一个整数,以下能表示偶数的是( )
A. B. C. D.
8.在式子,,1,,,,,中,单项式的个数为( )
A.6个 B.4个 C.5个 D.3个
二、多选题
9.如图,数轴上A,B两点分别表示有理数a,b,给出下列结论:①;②;③;④.其中正确的是( )
A.① B.② C.③ D.④
10.(多选)对多项式任意加一个或者两个小括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”例如:,…,则下列说法中正确的有( )
A.至少存在一种“加算操作”,使其结果与原多项式相等
B.不存在任何“加算操作”,使其结果与原多项式之和为0
C.只添加一个小括号,共有3种不同的结果
D.所有的“加算操作”共有4种不同的结果
三、填空题
11.,则的值为 .
12.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(n为非负整数)的展开式中a按次数从大到小排列的项的系数.

根据上述规律, .
13.若a与b互为相反数,c与d互为倒数,则 .
14.已知、互为相反数,的绝对值是2,、互为倒数,则 .
四、计算题
15.先化简,再求值:,其中,满足.
16.一个三位数,它的百位数字、十位数字和个位数字分别为,,,若将这个三位数的百位数字与个位数字交换,得到一个新的三位数.
(1)计算所得的新数与原数的差;
(2)这个差能被99整除吗?说明理由.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
【分析】先求出两船航行的速度,再列式求出距离即可.
【详解】解:甲船顺水而下,速度为,
乙船逆水而上,速度为,
后两船相距,
故选:A.
【点睛】此题考查了整式的加减应用,正确理解题意掌握轮船顺流和逆流航行的速度是解题的关键.
2.C
【分析】根据长方形的面积为长乘宽列式即可.
【详解】解:长方形的长是,宽是,
这个长方形的面积为,
故选:C.
【点睛】本题考查了列代数式,长方形的面积,正确列出代数式是解题的关键.
3.C
【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数即可.
【详解】解:、中二次项为,其系数为,此选项判断错误,不符合题意;
、中常数项是,此选项判断错误,不符合题意;
、中次数是,此选项判断正确,符合题意;
、是三次三项式,项数是,选项判断错误,不符合题意;
故选:.
【点睛】此题考查了多项式,解题的关键是正确理解多项式的有关概念.
4.A
【分析】根据合并同类项的运算法则计算即可.
【详解】解:,
故选:A.
【点睛】本题考查了合并同类项,熟练掌握合并同类项法则是解题的关键.
5.B
【分析】根据数轴,,的大小关系,判断出式子与0的关系,结合绝对值化简即可得到答案;
【详解】解:由数轴得,

∴,,,
∴原式,
故选:B;
【点睛】本题考查数轴及绝对值,解题的关键是根据数轴得到字母大小,从而得到式子与0的关系.
6.C
【分析】根据单项式的定义直接逐个判断即可得到答案;
【详解】解:由题意可得,
,,,是单项式,
故选:C;
【点睛】本题考查单项式的定义,解题的关键是注意积及是数字不是字母.
7.B
【分析】根据整数和偶数的概念判断即可.
【详解】解:表示任意一个整数,
可能是奇数也可能是偶数,是偶数,可能是奇数也可能是偶数,是奇数,
故选:B.
【点睛】本题考查了整数和偶数的概念,熟练掌握知识点是解题的关键.
8.C
【分析】单项式是数字与字母的积的形式,单独的一个数字或字母也是单项式,由此进行判断即可.
【详解】解:在式子,,1,,,,,中,
单项式有,1,,,,共五个,
故选:C
【点睛】本题考查了的单项式的概念,掌握单项式的判断方法是解题关键.
9.ACD
【分析】根据题意得到,则,即可判断①;进而推出,即可判断②;根据得到,即可判断③;根据,得到,即可判断④.
【详解】解:由题意得:,
∴,故①正确;
∴,
∴,故②错误;
∵,
∴ ,故③正确;
∵,
∴,故④正确;
故选ACD.
【点睛】本题主要考查了化简绝对值,整式的加减计算,根据数轴上点的位置判定式子符号,有理数除法计算,灵活运用所学知识是解题的关键.
10.ABD
【分析】给添加括号,即可判断A选项说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断B选项说法是否正确;列举出所有情况即可判断C、D说法是否正确.
【详解】解:∵
∴A选项说法正确

又∵无论如何添加括号,无法使得的符号为负号
∴B选项说法正确
第1种:;
第2种:;
第3种:;
第4种:;
∴共有4种情况
故D选项符合题意,C选项不符合题意;
故选ABD.
【点睛】本题主要考查了添括号、多项式的加减运算等知识点,理解题意是解答此题的关键.
11.
【分析】先根据绝对值、偶次方的非负性求得x、y的值,然后代入计算即可.
【详解】解:∵,
∴,即,
∴.
故答案为.
【点睛】本题主要考查了非负数的性质,理解几个非负数的和为零,则每个非负数均为零.
12.
【分析】由可得的各项展开式的系数除首尾两项都是1外,其余各项系数都等于的相邻两个系数的和;依据规律可得的各项系数依次为、、、、,据此即可完成本题.
【详解】解:根据题意可知图中第五行的数字依次为,
由此可得的各项展开式的系数除首尾两项外都是1外,其余各项系数都等于的相邻两个系数的和,
依规律可得的各项系数依次为:
因为它的每一行的数字正好对应了为非负整数)的展开式中按次数从大到小排列的项的系数,
所以.
故答案为:.
【点睛】本题考查的是有关探究规律的题目,关键是找出题中给出的规律.
13.
【分析】两数互为相反数,和为0;两数互为倒数,积为1,代入所给代数式计算.
【详解】解:∵a与b互为相反数,c与d互为倒数,
∴,
∴.
故答案为:.
【点睛】本题考查了相反数、倒数的定义,求代数式的值,熟练掌握相反数与倒数的意义是解答本题的关键.
14.或
【分析】根据题意可得、、的值,将其分别代入即可求出代数式的值;
【详解】解:∵、互为相反数,的绝对值是2,、互为倒数,
∴,,,
当时,

当时,
故答案为:或
【点睛】本题考查了代数式求值,熟练掌握相反数、绝对值、倒数的定义以及整体代入求值是解决本题的关键.
15.;.
【分析】先去括号化简整式,再根据非负数的和为0求出、的值,最后代入求值.
【详解】解:

,,,
,.
,.
当,时,
原式

【点睛】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则、非负数的和为0及有理数的混合运算是解决本题的关键.
16.(1)
(2)能,见解析
【分析】(1)先列出原数和新数,再用新数减去原数即可;
(2)根据所得的差数的特点即可得到结论.
【详解】(1)解:根据题意,原数为:,
新数为:,
新数与原数的差为:;
(2)解:这个差能被99整除,理由如下:

这个差能被99整除.
【点睛】本题主要考查了列代数式,数的整除,正确列出原数和新数是解题的关键.
答案第1页,共2页
答案第1页,共2页