2.4 有理数的加法 教案

文档属性

名称 2.4 有理数的加法 教案
格式 zip
文件大小 64.6KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2015-03-23 10:03:27

文档简介

课题 课时 1 课型 新授课
教学目标
重点难点分析及突破措施 1.重点:有理数加法运算律.2.难点:灵活运用运算律使运算简便.突破措施:分层次教学,讲授、练习相结合
教具准备 投影
板书设计 2.4有理数的加法(2) 加法交换律和结合律 例1
2.4 有理数的加法
教学过程 上课时间:(包括导引新课、依标导学、异步教学、达标测试、作业设计等)(一)、 从学生原有认知结构提出问题1.叙述有理数的加法法则.2.“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.3.计算下列各题,并说明是根据哪一条运算法则?(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);4.计算下列各题:(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-11);(4)(-7)+[(-10)+(-11)]; (5)[(-22)+(-27)]+(+27);(6)(-22)+[(-27)+(+27)].(二)、师生共同研究形成有理数运算律通过上面练习,引导学生得出:加法交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示上面一段话:a+b=b+a.运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.加法结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示上面一段话:(a+b)+c=a+(b+c).这里a,b,c表示任意三个有理数.(三)、运用举例 变式练习根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.例2 计算31+(-28)+28+69引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.解:31+(-28)+28+69=31+69+[(-28)+28 ] (加法交换律、加法结合律)) =100+0 (加法法则)= 100 (加法法则)本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.例3的学习教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便.四)课堂练习1.计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3)(-7)+(-6.5)+(-3)+6.5.2.计算:(要求注理由)五)课堂小结:三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算。常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来;(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。注意带分数拆开后的两部分要保持原来分数的符号。六)作业必做1.计算:(要求注理由)(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;2.计算(要求注理由)(1)(-17)+59+(-37); (2)(-18.65)+(-6.15)+18.15+6.15;3.当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b; (2)a+c;(3)a+a+a; (4)a+b+c.利用有理数的加法解下列各题(第4~8题):选做4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?7.小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,-7元,36.5元,98元一周总的盈亏情况如何?8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.58筐白菜的重量是多少?
教学后记 学生掌握有理数加法法则,并能运用法则进行计算课题 课时 1 课型 新授课
教学目标
重点难点分析及突破措施 重重点:有理数加法法则.难点:异号两数相加的法则.突破措施:分层次教学,讲授、练习相结合
教具准备 三角板
板书设计 有理数的加法 法则: 1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.
2.4 有理数的加法
教学过程 上课时间:(包括导引新课、依标导学、异步教学、达标测试、作业设计等)(一)、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③上半场输了3球,下半场赢了2球,全场输了1球,也就是 (-3)+(+2)=-1; ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0. ⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.(二)、应用举例 变式练习例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.(三)、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.七、练习设计必做:1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.2.计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.选做4*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.5*.分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|.
教学后记 学生掌握有理数加法法则,并能运用法则进行计算