第1-5单元高频考点检测卷(含答案)数学五年级上册青岛版

文档属性

名称 第1-5单元高频考点检测卷(含答案)数学五年级上册青岛版
格式 docx
文件大小 1.2MB
资源类型 试卷
版本资源 青岛版
科目 数学
更新时间 2023-11-09 21:10:09

图片预览

文档简介

中小学教育资源及组卷应用平台
第1-5单元高频考点检测卷-数学五年级上册青岛版
一、选择题
1.1.01×0.99进行简便计算,正确的是( )。
A.1×(0.99+0.01) B.1×0.99+0.01×0.99 C.1.01×1-0.01
2.下面图形有( )条对称轴。
A.1 B.2 C.3
3.下面说法正确的是(  )
A.无限小数一定比有限小数大
B.9.747747774…是循环小数
C.9.7474…中重复出现的数字是74
4.甲数是a,乙数是甲数的3倍.甲乙两数的和是(  )
A.3a B.a+3 C.a+3a
5.方程30x-2x=84的解是( )
A.x=15 B.x=38 C.x=3
6.下面是两平行线间的五个图形(阴影部分),它们的面积相比,( )。
A.三角形面积最大 B.梯形面积最大
C.都相等
二、填空题
7.两个因数的积是2.39,如果两个因数同时扩大到原来的10倍,则积是( )。
8.在括号里填上“>”“<”或“=”。
5.8×1.01( )5.8 3.9÷0.99( )3.9 5.3÷0.01( )5.3×100
0.75×3.7( )3.7 7.5×3.7( )0.75×37 5.8÷1.01( )5.8×1.01
9.5.27÷0.3的商是( )小数,保留两位小数是( )。
10.甲数比乙数多17.82,甲数的小数点向左移动一位,正好与乙数相等。乙数是( )。
11.一个平行四边形的菜地,底是20米,高是15米,如果每平方米种辣椒5棵,一共能种( )棵。
12.一堆圆木,最上层有3根,最下层有8根,每相邻两层差1根,这堆圆木共有( )根。
三、判断题
13.两个小数相乘,积不一定是小数。( )
14.。( )
15.2.5+2x>30,这个式子不是方程。( )
16.2x+3=13和5(x+2)=35的解不相同。( )
17.两个等底等高的三角形面积相等,一定可以拼成一个平行四边形。( )
四、计算题
18.直接写得数。
9-0.22= 0.7÷0.35= 10÷0.4= 4.8+0.3=
12.5×0.8= 0.25×4.3×4= 2.4×0.5= 3.8x+2.5x=
19.根据要求列竖式计算。
= =
=(得数保留两位小数) =(得数保留两位小数)
20.计算下面各题。(能用简便方法的用简便方法计算,并写出必要的计算过程。)


21.解方程。

22.计算下边图形的面积。(单位:厘米)
五、解答题
23.甲、乙两车同时从A、B两地相对出发,4.5小时两车相遇.已知甲车每小时行45千米,乙车每小时行55千米,A、B两地相距多少千米?
24.滕州素有我省“花卉基地”之称,颜村家家户户种植花卉。为种植花卉,小明家投资了36.5万元建了两个温室大棚。
(1)平均每公顷的造价是多少万元?
(2)两个大棚的年收入一共多少万元?
25.五(3)班图书角有100本故事书,故事书的本数比科普书的3倍多25本,科普书有多少本?(列方程解)
26.学校舞蹈队和合唱队共有72人,合唱队的人数是舞蹈队的2倍。合唱队和舞蹈队各有多少人?(列方程解答)
27.一块梯形果园地,上底长18米,下底比上底短5米,高16米。现在在这个果园里栽上梨树,已知每棵梨树的占地面积是4平方米,这块果园地最多可以栽梨树多少棵?
28.如图,下面是一块绿化带,中间有一条道路,其余是草地。绿化带中草地的面积是多少公顷?
参考答案:
1.B
【分析】把1.01拆成1+0.01,然后运用乘法分配律进行计算即可。
【详解】1.01×0.99
=(1+0.01)×0.99
=1×0.99+0.01×0.99
=0.99+0.0099
=0.9999
故答案为:B
【点睛】本题考查简便运算,熟记乘法运算定律是解题的关键。
2.B
【分析】将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,折痕所在的直线叫做它的对称轴,根据对称轴的定义确定该图形对称轴的数量,据此解答。
【详解】
所以,该图形有2条对称轴。
故答案为:B
【点睛】本题主要考查轴对称图形对称轴的数量,掌握对称轴的意义是解答题目的关键。
3.C
【详解】A项举出一个反例:0.22…<1,所以错误.B项没有循环节,所以不是循环小数.
4.C
【详解】试题分析:根据“甲数是a,乙数是甲数的3倍”,可以用a表示出甲数,那甲乙两数的和即可求出.
解:乙数是:a×3=3a,
甲乙两数的和:a+3a;
故选C.
点评:做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.
5.C
【分析】先化简方程,再根据等式的性质,方程两边同时除以28,即可解答。
【详解】30x-2x=84
解:28x=84
28x÷28=84÷28
x=3
方程30x-2x=84的解是x=3。
故答案为:C
【点睛】利用等式的性质求出方程的解是解答题目的关键。
6.C
【分析】平行四边形的面积公式:S=ah,三角形的面积公式:S=ah,梯形的面积公式:S=(a+b)h。通过观察图形发现:这五个图形的高相等,设它们的高为h。把数据代入公式求出它们的面积,然后进行比较即可。两个平行四边形等底等高,面积相等;两个三角形等底等高,面积相等。
【详解】设它们的高为h。
平行四边形的面积:4h
三角形的面积:×8×h=4h
梯形的面积:×(2+6)×h
=×8×h
=4h
所以它们的面积都相等。
故答案为:C
【点睛】明确这五个图形的高相等是解决此题的关键。
7.239
【分析】根据积的变化规律:两数相乘,其中一个因数乘m或者除以m(0除外),另一个因数乘n或者除以n(0除外),积就乘mn或者除以mn(0除外),据此判断即可。
【详解】由分析可得:
2.39×(10×10)
=2.39×100
=239
综上所述:两个因数的积是2.39,如果两个因数同时扩大到原来的10倍,则积是239。
【点睛】本题考查了积的变化规律,需要学生熟练掌握积和因数之间的变化关系。
8. > > = < = <
【分析】(1)一个数(0除外)乘大于1的数,积比原来的数大;
(2)一个数(0除外)除以小于1的数,商比原来的数大;
(3)一个数(0除外)除以0.01等于这个数乘100;
(4)一个数(0除外)乘小于1的数,积比原来的数小;
(5)一个因数乘几,另一个因数除以一个相同的数(0除外),积不变;
(6)一个数(0除外)除以大于1的数,商比原来的数小;
一个数(0除外)乘大于1的数,积比原来的数大。
【详解】(1)1.01>1,所以5.8×1.01>5.8;
(2)0.99<1,所以3.9÷0.99>3.9;
(3)5.3÷0.01=530,5.3×100=530,所以5.3÷0.01=5.3×100;
(4)0.75<1,所以0.75×3.7<3.7;
(5)0.75×37=(0.75×10)×(37÷10)=7.5×3.7
所以7.5×3.7=0.75×37;
(6)1.01>1,则5.8÷1.01<5.8,5.8×1.01>5.8;
所以5.8÷1.01<5.8×1.01。
【点睛】本题考查判断积与因数之间大小关系、商与被除数之间大小关系的方法以及积不变的规律的应用。
9. 循环/无限循环 17.57
【分析】在除法中除不尽时商有两种情况:一是循环小数,即一个数的小数部分,从某一位起,一个数字或多个数字依次不断重复出现,这样的数叫作循环小数;二是无限不循环小数,即无限不循环小数指小数点后有无限个数位,但没有周期性的重复或者说没有规律的小数,例如圆周率。除数是小数的小数除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按除数是整数的小数除法进行计算;被除数的数用完时,在被除数的末尾添“0”继续除;除不尽时,要求得数保留几位小数,要除到它的下一位,再用四舍五入的方法保留小数。
【详解】5.27÷0.3=17.5666…
17.5666…≈17.57
17.5666…是无限循环小数,保留两位小数是17.57。
【点睛】本题考查了小数除法的计算和商的近似数,掌握相应的计算方法是解答本题的关键。
10.1.98
【分析】根据题意可知,甲数是乙数的10倍,根据“甲数-乙数=17.82”列方程解答即可。
【详解】解:设乙数为x,则甲数为10x;
10x-x=17.82
9x=17.82
x=1.98
【点睛】解答本题的关键是根据“甲数的小数点向左移动一位,正好与乙数相等”明确甲数是乙数的10倍。
11.1500
【分析】根据平行四边形的面积=底×高,代入数据求出这个平行四边形的菜地的面积,再乘每平方米种辣椒的棵数,即可求出一共能种多少棵辣椒。
【详解】20×15×5=1500(棵)
即一共能种1500棵辣椒。
【点睛】此题的解题关键是灵活运用平行四边形面积的计算方法。
12.33
【分析】把这堆圆木看作梯形,则该梯形的上底为3,下底为8,梯形的高为8-3+1=6,然后根据梯形的面积公式:S=(a+b)h÷2,据此进行计算即可。
【详解】8-3+1
=5+1
=6(层)
(3+8)×6÷2
=11×6÷2
=66÷2
=33(根)
则这堆圆木共有33根。
【点睛】本题考查梯形的面积,熟记公式是解题的关键。
13.√
【分析】假设这两个小数分别是2.5和0.4,然后求出2.5和0.4的积,进而判断即可。
【详解】如:2.5×0.4=1,此时的积为1,是整数。所以原题干说法正确。
故答案为:√
【点睛】本题考查小数乘法,通过举例子可快速得到答案。
14.√
【分析】小数乘法,小数乘法先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;如果小数的位数不够,需要在前面补0占位。
除数是小数的小数除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按除数是整数的小数除法进行计算;被除数的数用完时,在被除数的末尾添“0”继续除。据此计算出两边的结果,再比较。
【详解】
所以原题干说法正确。
故答案为:√
【点睛】本题考查了小数乘除法的计算,掌握相应的计算方法是解答本题的关键。
15.√
【分析】根据方程的意义:含有未知数的等式叫做方程;据此分析判断即可。
【详解】2.5+2x>30,是含有未知数的式子,而不是等式;所以:2.5+2x>30,这个式子不是方程,原题说法正确。
故答案为:√
【点睛】此题主要考查方程的意义,方程要具备两个条件:一是含有未知数,二需要是等式。
16.×
【分析】根据等式的性质,分别求出2x+3=13和5(4+2)=35的解,再对比即可。
【详解】2x+3=13
解:2x+3-3=13-3
2x=10
2x÷2=10÷2
x=5
5(x+2)=35
解:5(x+2)÷5=35÷5
x+2=7
x+2-2=7-2
x=5
则2x+3=13和5(x+2)=35的解相同。原题干说法错误。
故答案为:×
【点睛】本题考查解方程,熟练运用等式的性质是解题的关键。
17.×
【分析】在拼组平行四边形时,平行四边形两组对边平行且相等,且有公共边,两个完全一样的,也就是形状和大小相同的三角形可以拼成一个平行四边形,面积、周长相等不能保证形状相同,不能拼成一个平行四边形,据此解答即可。
【详解】由分析可得:
如图:
两个完全一样的三角形,一定可以拼成一个平行四边形。所以原题说法错误。
故答案为:×
【点睛】熟练掌握三角形、平行四边形的特征,是解答本题的关键。
18.8.78;2;25;5.1
10;4.3;1.2;6.3x
【详解】略
19.6.946;756
7.62;1.54;
【分析】小数乘法先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;如果小数的位数不够,需要在前面补0占位。
除数是小数的小数除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足)﹔然后按除数是整数的小数除法进行计算。
根据四舍五入法求积或商的近似数,找到要求保留的数位,看下一位;如果下一位的数字大于或等于5,要往前进一;如果下一位的数字小于5,要舍去。
【详解】=6.946 =756

≈7.62 ≈1.54

20.70.9;10
23;32
【分析】,利用乘法分配律进行简算;
,将0.32拆成0.4×0.8,利用乘法交换律和结合律进行简算;
,先算减法,再利用乘法分配律进行简算;
,根据除法的性质,将后两个数先乘起来再计算。
【详解】
21.;
【分析】(1)根据等式的性质,先在方程两边同时减去3.6,再同时除以2.8即可;
(2)根据等式的性质,在方程两边同时乘x,再同时除以3.5即可。
【详解】
解:
解:
22.117.5平方厘米
【分析】此组合图形是由一个长为10厘米,宽为3厘米的长方形和一个上底为10厘米,下底为15厘米,高为(10-3)厘米的梯形组合而成,利用长方形和梯形的面积公式分别求出这两个图形的面积,再相加即可求出组合图形的面积。
【详解】10×3+(10+15)×(10-3)÷2
=30+25×7÷2
=30+87.5
=117.5(平方厘米)
即组合图形的面积是117.5平方厘米。
23.解:(45+55)×4.5 =100×4.5
=450(千米)
答:A、B两地相距450千米.
【详解】【分析】首先用甲车每小时行的路程加上乙车每小时行的路程,求出两车的速度之和是多少;然后用它乘两车相遇用的时间,求出A、B两地相距多少千米即可.
24.(1)73万元;
(2)24.75万元
【分析】(1)两个温室大棚的面积等于(0.3+0.2)公顷,投资36.5万元,根据平均数的意义,用36.5除以(0.3+0.2),即可求出平均每公顷的造价是多少万元。
(2)用第一个温室大棚每公顷的年收入乘第一个温室大棚的面积,求出第一个温室大棚的年收入,用第二个温室大棚每公顷的年收入乘第二个温室大棚的面积,求出第二个温室大棚的年收入,把两个大棚的年收入加起来,即可得解。
【详解】(1)36.5÷(0.3+0.2)
=36.5÷0.5
=73(万元)
答:平均每公顷的造价是73万元。
(2)50.5×0.3+48×0.2
=15.15+9.6
=24.75(万元)
答:两个大棚的年收入一共24.75万元。
【点睛】此题主要考查小数乘除法在实际生活中的应用。
25.25本
【分析】可假设科普书有x本,根据故事书有100本,且故事书的本数比科普书的3倍多25本,列出等量关系式,据此解答。
【详解】解:设科普书有x本。
3x+25=100
3x+25-25=100-25
3x=75
3x÷3=75÷3
x=25
答:科普书有25本。
【点睛】解答本题的关键是找出题目中的数量关系,列出方程来解答。
26.48人;24人
【分析】假设舞蹈队有x人,则合唱队有2x人,再根据题目中的数量关系:舞蹈队的人数+合唱队的人数=72人,据此列出方程,解方程即可分别求出合唱队和舞蹈队各有多少人。
【详解】解:设舞蹈队的人数是x人,则合唱队的人数是2x人,根据题意可得:
3x=72
3x÷3=72÷3
x=24
(人)
答:舞蹈队有24人,合唱队有48人。
【点睛】此题的解题关键是弄清题意,把舞蹈队的人数设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
27.62棵
【分析】根据题意可知,下底是(18-5)米,根据梯形的面积=(上底+下底)×高÷2,代入数据即可求出果园的面积,已知每棵梨树的占地面积是4平方米,用果园的面积除以4,即可求出这块果园地最多可以栽梨树多少棵。
【详解】18-5=13(米)
(18+13)×16÷2
=31×16÷2
=248(平方米)
248÷4=62(棵)
答:这块果园地最多可以栽梨树62棵。
【点睛】本题主要考查了梯形的面积公式的灵活应用,要熟练掌握公式。
28.8公顷
【分析】根据题意可知,把小路两边的草地通过平移转化为上底为(150+200)米,下底为(500-50)米,高200米的梯形,再根据梯形的面积公式解答即可。
【详解】梯形上底:150+200=350(米)
梯形下底:500-50=450(米)
梯形面积:(350+450)×200÷2
=800×200÷2
=160000÷2
=80000(平方米)
=8公顷
答:绿化带中草地的面积是8公顷。
【点睛】此题主要考查梯形的面积公式的灵活运用,解答关键是明确:把原图形平移转化为一个梯形。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录